OSSP CVS Repository

ossp - Check-in [5492]
Not logged in
[Honeypot]  [Browse]  [Home]  [Login]  [Reports
[Search]  [Ticket]  [Timeline
  [Patchset]  [Tagging/Branching

Check-in Number: 5492
Date: 2005-Jul-23 23:17:40 (local)
2005-Jul-23 21:17:40 (UTC)
User:rse
Branch:
Comment: Import new upstream version: Mozilla JavaScript 1.6-1.5.0.5-20060722
Tickets:
Inspections:
Files:
ossp-pkg/js/src/jsdtoa.c      1.1 -> 1.1.1.1    
ossp-pkg/js/src/jsdtoa.c      added-> 1.1

ossp-pkg/js/src/jsdtoa.c -> 1.1

*** /dev/null    Sat Nov 23 05:08:00 2024
--- -    Sat Nov 23 05:09:13 2024
***************
*** 0 ****
--- 1,3125 ----
+ /* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*-
+  *
+  * ***** BEGIN LICENSE BLOCK *****
+  * Version: MPL 1.1/GPL 2.0/LGPL 2.1
+  *
+  * The contents of this file are subject to the Mozilla Public License Version
+  * 1.1 (the "License"); you may not use this file except in compliance with
+  * the License. You may obtain a copy of the License at
+  * http://www.mozilla.org/MPL/
+  *
+  * Software distributed under the License is distributed on an "AS IS" basis,
+  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
+  * for the specific language governing rights and limitations under the
+  * License.
+  *
+  * The Original Code is Mozilla Communicator client code, released
+  * March 31, 1998.
+  *
+  * The Initial Developer of the Original Code is
+  * Netscape Communications Corporation.
+  * Portions created by the Initial Developer are Copyright (C) 1998
+  * the Initial Developer. All Rights Reserved.
+  *
+  * Contributor(s):
+  *
+  * Alternatively, the contents of this file may be used under the terms of
+  * either of the GNU General Public License Version 2 or later (the "GPL"),
+  * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
+  * in which case the provisions of the GPL or the LGPL are applicable instead
+  * of those above. If you wish to allow use of your version of this file only
+  * under the terms of either the GPL or the LGPL, and not to allow others to
+  * use your version of this file under the terms of the MPL, indicate your
+  * decision by deleting the provisions above and replace them with the notice
+  * and other provisions required by the GPL or the LGPL. If you do not delete
+  * the provisions above, a recipient may use your version of this file under
+  * the terms of any one of the MPL, the GPL or the LGPL.
+  *
+  * ***** END LICENSE BLOCK ***** */
+ 
+ /*
+  * Portable double to alphanumeric string and back converters.
+  */
+ #include "jsstddef.h"
+ #include "jslibmath.h"
+ #include "jstypes.h"
+ #include "jsdtoa.h"
+ #include "jsprf.h"
+ #include "jsutil.h" /* Added by JSIFY */
+ #include "jspubtd.h"
+ #include "jsnum.h"
+ 
+ #ifdef JS_THREADSAFE
+ #include "prlock.h"
+ #endif
+ 
+ /****************************************************************
+  *
+  * The author of this software is David M. Gay.
+  *
+  * Copyright (c) 1991 by Lucent Technologies.
+  *
+  * Permission to use, copy, modify, and distribute this software for any
+  * purpose without fee is hereby granted, provided that this entire notice
+  * is included in all copies of any software which is or includes a copy
+  * or modification of this software and in all copies of the supporting
+  * documentation for such software.
+  *
+  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
+  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
+  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
+  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
+  *
+  ***************************************************************/
+ 
+ /* Please send bug reports to
+     David M. Gay
+     Bell Laboratories, Room 2C-463
+     600 Mountain Avenue
+     Murray Hill, NJ 07974-0636
+     U.S.A.
+     dmg@bell-labs.com
+  */
+ 
+ /* On a machine with IEEE extended-precision registers, it is
+  * necessary to specify double-precision (53-bit) rounding precision
+  * before invoking strtod or dtoa.  If the machine uses (the equivalent
+  * of) Intel 80x87 arithmetic, the call
+  *  _control87(PC_53, MCW_PC);
+  * does this with many compilers.  Whether this or another call is
+  * appropriate depends on the compiler; for this to work, it may be
+  * necessary to #include "float.h" or another system-dependent header
+  * file.
+  */
+ 
+ /* strtod for IEEE-arithmetic machines.
+  *
+  * This strtod returns a nearest machine number to the input decimal
+  * string (or sets err to JS_DTOA_ERANGE or JS_DTOA_ENOMEM).  With IEEE
+  * arithmetic, ties are broken by the IEEE round-even rule.  Otherwise
+  * ties are broken by biased rounding (add half and chop).
+  *
+  * Inspired loosely by William D. Clinger's paper "How to Read Floating
+  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
+  *
+  * Modifications:
+  *
+  *  1. We only require IEEE double-precision
+  *      arithmetic (not IEEE double-extended).
+  *  2. We get by with floating-point arithmetic in a case that
+  *      Clinger missed -- when we're computing d * 10^n
+  *      for a small integer d and the integer n is not too
+  *      much larger than 22 (the maximum integer k for which
+  *      we can represent 10^k exactly), we may be able to
+  *      compute (d*10^k) * 10^(e-k) with just one roundoff.
+  *  3. Rather than a bit-at-a-time adjustment of the binary
+  *      result in the hard case, we use floating-point
+  *      arithmetic to determine the adjustment to within
+  *      one bit; only in really hard cases do we need to
+  *      compute a second residual.
+  *  4. Because of 3., we don't need a large table of powers of 10
+  *      for ten-to-e (just some small tables, e.g. of 10^k
+  *      for 0 <= k <= 22).
+  */
+ 
+ /*
+  * #define IEEE_8087 for IEEE-arithmetic machines where the least
+  *  significant byte has the lowest address.
+  * #define IEEE_MC68k for IEEE-arithmetic machines where the most
+  *  significant byte has the lowest address.
+  * #define Long int on machines with 32-bit ints and 64-bit longs.
+  * #define Sudden_Underflow for IEEE-format machines without gradual
+  *  underflow (i.e., that flush to zero on underflow).
+  * #define No_leftright to omit left-right logic in fast floating-point
+  *  computation of js_dtoa.
+  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
+  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
+  *  that use extended-precision instructions to compute rounded
+  *  products and quotients) with IBM.
+  * #define ROUND_BIASED for IEEE-format with biased rounding.
+  * #define Inaccurate_Divide for IEEE-format with correctly rounded
+  *  products but inaccurate quotients, e.g., for Intel i860.
+  * #define JS_HAVE_LONG_LONG on machines that have a "long long"
+  *  integer type (of >= 64 bits).  If long long is available and the name is
+  *  something other than "long long", #define Llong to be the name,
+  *  and if "unsigned Llong" does not work as an unsigned version of
+  *  Llong, #define #ULLong to be the corresponding unsigned type.
+  * #define Bad_float_h if your system lacks a float.h or if it does not
+  *  define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
+  *  FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
+  * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
+  *  if memory is available and otherwise does something you deem
+  *  appropriate.  If MALLOC is undefined, malloc will be invoked
+  *  directly -- and assumed always to succeed.
+  * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
+  *  memory allocations from a private pool of memory when possible.
+  *  When used, the private pool is PRIVATE_MEM bytes long: 2000 bytes,
+  *  unless #defined to be a different length.  This default length
+  *  suffices to get rid of MALLOC calls except for unusual cases,
+  *  such as decimal-to-binary conversion of a very long string of
+  *  digits.
+  * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
+  *  Infinity and NaN (case insensitively).  On some systems (e.g.,
+  *  some HP systems), it may be necessary to #define NAN_WORD0
+  *  appropriately -- to the most significant word of a quiet NaN.
+  *  (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
+  * #define MULTIPLE_THREADS if the system offers preemptively scheduled
+  *  multiple threads.  In this case, you must provide (or suitably
+  *  #define) two locks, acquired by ACQUIRE_DTOA_LOCK() and released
+  *  by RELEASE_DTOA_LOCK().  (The second lock, accessed
+  *  in pow5mult, ensures lazy evaluation of only one copy of high
+  *  powers of 5; omitting this lock would introduce a small
+  *  probability of wasting memory, but would otherwise be harmless.)
+  *  You must also invoke freedtoa(s) to free the value s returned by
+  *  dtoa.  You may do so whether or not MULTIPLE_THREADS is #defined.
+  * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
+  *  avoids underflows on inputs whose result does not underflow.
+  */
+ #ifdef IS_LITTLE_ENDIAN
+ #define IEEE_8087
+ #else
+ #define IEEE_MC68k
+ #endif
+ 
+ #ifndef Long
+ #define Long int32
+ #endif
+ 
+ #ifndef ULong
+ #define ULong uint32
+ #endif
+ 
+ #define Bug(errorMessageString) JS_ASSERT(!errorMessageString)
+ 
+ #include "stdlib.h"
+ #include "string.h"
+ 
+ #ifdef MALLOC
+ extern void *MALLOC(size_t);
+ #else
+ #define MALLOC malloc
+ #endif
+ 
+ #define Omit_Private_Memory
+ /* Private memory currently doesn't work with JS_THREADSAFE */
+ #ifndef Omit_Private_Memory
+ #ifndef PRIVATE_MEM
+ #define PRIVATE_MEM 2000
+ #endif
+ #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
+ static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
+ #endif
+ 
+ #ifdef Bad_float_h
+ #undef __STDC__
+ 
+ #define DBL_DIG 15
+ #define DBL_MAX_10_EXP 308
+ #define DBL_MAX_EXP 1024
+ #define FLT_RADIX 2
+ #define FLT_ROUNDS 1
+ #define DBL_MAX 1.7976931348623157e+308
+ 
+ 
+ 
+ #ifndef LONG_MAX
+ #define LONG_MAX 2147483647
+ #endif
+ 
+ #else /* ifndef Bad_float_h */
+ #include "float.h"
+ #endif /* Bad_float_h */
+ 
+ #ifndef __MATH_H__
+ #include "math.h"
+ #endif
+ 
+ #ifndef CONST
+ #define CONST const
+ #endif
+ 
+ #if defined(IEEE_8087) + defined(IEEE_MC68k) != 1
+ Exactly one of IEEE_8087 or IEEE_MC68k should be defined.
+ #endif
+ 
+ #define word0(x)        JSDOUBLE_HI32(x)
+ #define set_word0(x, y) JSDOUBLE_SET_HI32(x, y)
+ #define word1(x)        JSDOUBLE_LO32(x)
+ #define set_word1(x, y) JSDOUBLE_SET_LO32(x, y)
+ 
+ #define Storeinc(a,b,c) (*(a)++ = (b) << 16 | (c) & 0xffff)
+ 
+ /* #define P DBL_MANT_DIG */
+ /* Ten_pmax = floor(P*log(2)/log(5)) */
+ /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
+ /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
+ /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
+ 
+ #define Exp_shift  20
+ #define Exp_shift1 20
+ #define Exp_msk1    0x100000
+ #define Exp_msk11   0x100000
+ #define Exp_mask  0x7ff00000
+ #define P 53
+ #define Bias 1023
+ #define Emin (-1022)
+ #define Exp_1  0x3ff00000
+ #define Exp_11 0x3ff00000
+ #define Ebits 11
+ #define Frac_mask  0xfffff
+ #define Frac_mask1 0xfffff
+ #define Ten_pmax 22
+ #define Bletch 0x10
+ #define Bndry_mask  0xfffff
+ #define Bndry_mask1 0xfffff
+ #define LSB 1
+ #define Sign_bit 0x80000000
+ #define Log2P 1
+ #define Tiny0 0
+ #define Tiny1 1
+ #define Quick_max 14
+ #define Int_max 14
+ #define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
+ #ifndef NO_IEEE_Scale
+ #define Avoid_Underflow
+ #endif
+ 
+ 
+ 
+ #ifdef RND_PRODQUOT
+ #define rounded_product(a,b) a = rnd_prod(a, b)
+ #define rounded_quotient(a,b) a = rnd_quot(a, b)
+ extern double rnd_prod(double, double), rnd_quot(double, double);
+ #else
+ #define rounded_product(a,b) a *= b
+ #define rounded_quotient(a,b) a /= b
+ #endif
+ 
+ #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
+ #define Big1 0xffffffff
+ 
+ #ifndef JS_HAVE_LONG_LONG
+ #undef ULLong
+ #else   /* long long available */
+ #ifndef Llong
+ #define Llong JSInt64
+ #endif
+ #ifndef ULLong
+ #define ULLong JSUint64
+ #endif
+ #endif /* JS_HAVE_LONG_LONG */
+ 
+ #ifdef JS_THREADSAFE
+ #define MULTIPLE_THREADS
+ static PRLock *freelist_lock;
+ #define ACQUIRE_DTOA_LOCK()                                                   \
+     JS_BEGIN_MACRO                                                            \
+         if (!initialized)                                                     \
+             InitDtoa();                                                       \
+         PR_Lock(freelist_lock);                                               \
+     JS_END_MACRO
+ #define RELEASE_DTOA_LOCK() PR_Unlock(freelist_lock)
+ #else
+ #undef MULTIPLE_THREADS
+ #define ACQUIRE_DTOA_LOCK()   /*nothing*/
+ #define RELEASE_DTOA_LOCK()   /*nothing*/
+ #endif
+ 
+ #define Kmax 15
+ 
+ struct Bigint {
+     struct Bigint *next;  /* Free list link */
+     int32 k;              /* lg2(maxwds) */
+     int32 maxwds;         /* Number of words allocated for x */
+     int32 sign;           /* Zero if positive, 1 if negative.  Ignored by most Bigint routines! */
+     int32 wds;            /* Actual number of words.  If value is nonzero, the most significant word must be nonzero. */
+     ULong x[1];           /* wds words of number in little endian order */
+ };
+ 
+ #ifdef ENABLE_OOM_TESTING
+ /* Out-of-memory testing.  Use a good testcase (over and over) and then use
+  * these routines to cause a memory failure on every possible Balloc allocation,
+  * to make sure that all out-of-memory paths can be followed.  See bug 14044.
+  */
+ 
+ static int allocationNum;               /* which allocation is next? */
+ static int desiredFailure;              /* which allocation should fail? */
+ 
+ /**
+  * js_BigintTestingReset
+  *
+  * Call at the beginning of a test run to set the allocation failure position.
+  * (Set to 0 to just have the engine count allocations without failing.)
+  */
+ JS_PUBLIC_API(void)
+ js_BigintTestingReset(int newFailure)
+ {
+     allocationNum = 0;
+     desiredFailure = newFailure;
+ }
+ 
+ /**
+  * js_BigintTestingWhere
+  *
+  * Report the current allocation position.  This is really only useful when you
+  * want to learn how many allocations a test run has.
+  */
+ JS_PUBLIC_API(int)
+ js_BigintTestingWhere()
+ {
+     return allocationNum;
+ }
+ 
+ 
+ /*
+  * So here's what you do: Set up a fantastic test case that exercises the
+  * elements of the code you wish.  Set the failure point at 0 and run the test,
+  * then get the allocation position.  This number is the number of allocations
+  * your test makes.  Now loop from 1 to that number, setting the failure point
+  * at each loop count, and run the test over and over, causing failures at each
+  * step.  Any memory failure *should* cause a Out-Of-Memory exception; if it
+  * doesn't, then there's still an error here.
+  */
+ #endif
+ 
+ typedef struct Bigint Bigint;
+ 
+ static Bigint *freelist[Kmax+1];
+ 
+ /*
+  * Allocate a Bigint with 2^k words.
+  * This is not threadsafe. The caller must use thread locks
+  */
+ static Bigint *Balloc(int32 k)
+ {
+     int32 x;
+     Bigint *rv;
+ #ifndef Omit_Private_Memory
+     uint32 len;
+ #endif
+ 
+ #ifdef ENABLE_OOM_TESTING
+     if (++allocationNum == desiredFailure) {
+         printf("Forced Failing Allocation number %d\n", allocationNum);
+         return NULL;
+     }
+ #endif
+ 
+     if ((rv = freelist[k]) != NULL)
+         freelist[k] = rv->next;
+     if (rv == NULL) {
+         x = 1 << k;
+ #ifdef Omit_Private_Memory
+         rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
+ #else
+         len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
+             /sizeof(double);
+         if (pmem_next - private_mem + len <= PRIVATE_mem) {
+             rv = (Bigint*)pmem_next;
+             pmem_next += len;
+             }
+         else
+             rv = (Bigint*)MALLOC(len*sizeof(double));
+ #endif
+         if (!rv)
+             return NULL;
+         rv->k = k;
+         rv->maxwds = x;
+     }
+     rv->sign = rv->wds = 0;
+     return rv;
+ }
+ 
+ static void Bfree(Bigint *v)
+ {
+     if (v) {
+         v->next = freelist[v->k];
+         freelist[v->k] = v;
+     }
+ }
+ 
+ #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
+                           y->wds*sizeof(Long) + 2*sizeof(int32))
+ 
+ /* Return b*m + a.  Deallocate the old b.  Both a and m must be between 0 and
+  * 65535 inclusive.  NOTE: old b is deallocated on memory failure.
+  */
+ static Bigint *multadd(Bigint *b, int32 m, int32 a)
+ {
+     int32 i, wds;
+ #ifdef ULLong
+     ULong *x;
+     ULLong carry, y;
+ #else
+     ULong carry, *x, y;
+     ULong xi, z;
+ #endif
+     Bigint *b1;
+ 
+ #ifdef ENABLE_OOM_TESTING
+     if (++allocationNum == desiredFailure) {
+         /* Faux allocation, because I'm not getting all of the failure paths
+          * without it.
+          */
+         printf("Forced Failing Allocation number %d\n", allocationNum);
+         Bfree(b);
+         return NULL;
+     }
+ #endif
+ 
+     wds = b->wds;
+     x = b->x;
+     i = 0;
+     carry = a;
+     do {
+ #ifdef ULLong
+         y = *x * (ULLong)m + carry;
+         carry = y >> 32;
+         *x++ = (ULong)(y & 0xffffffffUL);
+ #else
+         xi = *x;
+         y = (xi & 0xffff) * m + carry;
+         z = (xi >> 16) * m + (y >> 16);
+         carry = z >> 16;
+         *x++ = (z << 16) + (y & 0xffff);
+ #endif
+     }
+     while(++i < wds);
+     if (carry) {
+         if (wds >= b->maxwds) {
+             b1 = Balloc(b->k+1);
+             if (!b1) {
+                 Bfree(b);
+                 return NULL;
+             }
+             Bcopy(b1, b);
+             Bfree(b);
+             b = b1;
+         }
+         b->x[wds++] = (ULong)carry;
+         b->wds = wds;
+     }
+     return b;
+ }
+ 
+ static Bigint *s2b(CONST char *s, int32 nd0, int32 nd, ULong y9)
+ {
+     Bigint *b;
+     int32 i, k;
+     Long x, y;
+ 
+     x = (nd + 8) / 9;
+     for(k = 0, y = 1; x > y; y <<= 1, k++) ;
+     b = Balloc(k);
+     if (!b)
+         return NULL;
+     b->x[0] = y9;
+     b->wds = 1;
+ 
+     i = 9;
+     if (9 < nd0) {
+         s += 9;
+         do {
+             b = multadd(b, 10, *s++ - '0');
+             if (!b)
+                 return NULL;
+         } while(++i < nd0);
+         s++;
+     }
+     else
+         s += 10;
+     for(; i < nd; i++) {
+         b = multadd(b, 10, *s++ - '0');
+         if (!b)
+             return NULL;
+     }
+     return b;
+ }
+ 
+ 
+ /* Return the number (0 through 32) of most significant zero bits in x. */
+ static int32 hi0bits(register ULong x)
+ {
+     register int32 k = 0;
+ 
+     if (!(x & 0xffff0000)) {
+         k = 16;
+         x <<= 16;
+     }
+     if (!(x & 0xff000000)) {
+         k += 8;
+         x <<= 8;
+     }
+     if (!(x & 0xf0000000)) {
+         k += 4;
+         x <<= 4;
+     }
+     if (!(x & 0xc0000000)) {
+         k += 2;
+         x <<= 2;
+     }
+     if (!(x & 0x80000000)) {
+         k++;
+         if (!(x & 0x40000000))
+             return 32;
+     }
+     return k;
+ }
+ 
+ 
+ /* Return the number (0 through 32) of least significant zero bits in y.
+  * Also shift y to the right past these 0 through 32 zeros so that y's
+  * least significant bit will be set unless y was originally zero. */
+ static int32 lo0bits(ULong *y)
+ {
+     register int32 k;
+     register ULong x = *y;
+ 
+     if (x & 7) {
+         if (x & 1)
+             return 0;
+         if (x & 2) {
+             *y = x >> 1;
+             return 1;
+         }
+         *y = x >> 2;
+         return 2;
+     }
+     k = 0;
+     if (!(x & 0xffff)) {
+         k = 16;
+         x >>= 16;
+     }
+     if (!(x & 0xff)) {
+         k += 8;
+         x >>= 8;
+     }
+     if (!(x & 0xf)) {
+         k += 4;
+         x >>= 4;
+     }
+     if (!(x & 0x3)) {
+         k += 2;
+         x >>= 2;
+     }
+     if (!(x & 1)) {
+         k++;
+         x >>= 1;
+         if (!x & 1)
+             return 32;
+     }
+     *y = x;
+     return k;
+ }
+ 
+ /* Return a new Bigint with the given integer value, which must be nonnegative. */
+ static Bigint *i2b(int32 i)
+ {
+     Bigint *b;
+ 
+     b = Balloc(1);
+     if (!b)
+         return NULL;
+     b->x[0] = i;
+     b->wds = 1;
+     return b;
+ }
+ 
+ /* Return a newly allocated product of a and b. */
+ static Bigint *mult(CONST Bigint *a, CONST Bigint *b)
+ {
+     CONST Bigint *t;
+     Bigint *c;
+     int32 k, wa, wb, wc;
+     ULong y;
+     ULong *xc, *xc0, *xce;
+     CONST ULong *x, *xa, *xae, *xb, *xbe;
+ #ifdef ULLong
+     ULLong carry, z;
+ #else
+     ULong carry, z;
+     ULong z2;
+ #endif
+ 
+     if (a->wds < b->wds) {
+         t = a;
+         a = b;
+         b = t;
+     }
+     k = a->k;
+     wa = a->wds;
+     wb = b->wds;
+     wc = wa + wb;
+     if (wc > a->maxwds)
+         k++;
+     c = Balloc(k);
+     if (!c)
+         return NULL;
+     for(xc = c->x, xce = xc + wc; xc < xce; xc++)
+         *xc = 0;
+     xa = a->x;
+     xae = xa + wa;
+     xb = b->x;
+     xbe = xb + wb;
+     xc0 = c->x;
+ #ifdef ULLong
+     for(; xb < xbe; xc0++) {
+         if ((y = *xb++) != 0) {
+             x = xa;
+             xc = xc0;
+             carry = 0;
+             do {
+                 z = *x++ * (ULLong)y + *xc + carry;
+                 carry = z >> 32;
+                 *xc++ = (ULong)(z & 0xffffffffUL);
+                 }
+                 while(x < xae);
+             *xc = (ULong)carry;
+             }
+         }
+ #else
+     for(; xb < xbe; xb++, xc0++) {
+         if ((y = *xb & 0xffff) != 0) {
+             x = xa;
+             xc = xc0;
+             carry = 0;
+             do {
+                 z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
+                 carry = z >> 16;
+                 z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
+                 carry = z2 >> 16;
+                 Storeinc(xc, z2, z);
+             }
+             while(x < xae);
+             *xc = carry;
+         }
+         if ((y = *xb >> 16) != 0) {
+             x = xa;
+             xc = xc0;
+             carry = 0;
+             z2 = *xc;
+             do {
+                 z = (*x & 0xffff) * y + (*xc >> 16) + carry;
+                 carry = z >> 16;
+                 Storeinc(xc, z, z2);
+                 z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
+                 carry = z2 >> 16;
+             }
+             while(x < xae);
+             *xc = z2;
+         }
+     }
+ #endif
+     for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
+     c->wds = wc;
+     return c;
+ }
+ 
+ /*
+  * 'p5s' points to a linked list of Bigints that are powers of 5.
+  * This list grows on demand, and it can only grow: it won't change
+  * in any other way.  So if we read 'p5s' or the 'next' field of
+  * some Bigint on the list, and it is not NULL, we know it won't
+  * change to NULL or some other value.  Only when the value of
+  * 'p5s' or 'next' is NULL do we need to acquire the lock and add
+  * a new Bigint to the list.
+  */
+ 
+ static Bigint *p5s;
+ 
+ #ifdef JS_THREADSAFE
+ static PRLock *p5s_lock;
+ #endif
+ 
+ /* Return b * 5^k.  Deallocate the old b.  k must be nonnegative. */
+ /* NOTE: old b is deallocated on memory failure. */
+ static Bigint *pow5mult(Bigint *b, int32 k)
+ {
+     Bigint *b1, *p5, *p51;
+     int32 i;
+     static CONST int32 p05[3] = { 5, 25, 125 };
+ 
+     if ((i = k & 3) != 0) {
+         b = multadd(b, p05[i-1], 0);
+         if (!b)
+             return NULL;
+     }
+ 
+     if (!(k >>= 2))
+         return b;
+     if (!(p5 = p5s)) {
+ #ifdef JS_THREADSAFE
+         /*
+          * We take great care to not call i2b() and Bfree()
+          * while holding the lock.
+          */
+         Bigint *wasted_effort = NULL;
+         p5 = i2b(625);
+         if (!p5) {
+             Bfree(b);
+             return NULL;
+         }
+         /* lock and check again */
+         PR_Lock(p5s_lock);
+         if (!p5s) {
+             /* first time */
+             p5s = p5;
+             p5->next = 0;
+         } else {
+             /* some other thread just beat us */
+             wasted_effort = p5;
+             p5 = p5s;
+         }
+         PR_Unlock(p5s_lock);
+         if (wasted_effort) {
+             Bfree(wasted_effort);
+         }
+ #else
+         /* first time */
+         p5 = p5s = i2b(625);
+         if (!p5) {
+             Bfree(b);
+             return NULL;
+         }
+         p5->next = 0;
+ #endif
+     }
+     for(;;) {
+         if (k & 1) {
+             b1 = mult(b, p5);
+             Bfree(b);
+             if (!b1)
+                 return NULL;
+             b = b1;
+         }
+         if (!(k >>= 1))
+             break;
+         if (!(p51 = p5->next)) {
+ #ifdef JS_THREADSAFE
+             Bigint *wasted_effort = NULL;
+             p51 = mult(p5, p5);
+             if (!p51) {
+                 Bfree(b);
+                 return NULL;
+             }
+             PR_Lock(p5s_lock);
+             if (!p5->next) {
+                 p5->next = p51;
+                 p51->next = 0;
+             } else {
+                 wasted_effort = p51;
+                 p51 = p5->next;
+             }
+             PR_Unlock(p5s_lock);
+             if (wasted_effort) {
+                 Bfree(wasted_effort);
+             }
+ #else
+             p51 = mult(p5,p5);
+             if (!p51) {
+                 Bfree(b);
+                 return NULL;
+             }
+             p51->next = 0;
+             p5->next = p51;
+ #endif
+         }
+         p5 = p51;
+     }
+     return b;
+ }
+ 
+ /* Return b * 2^k.  Deallocate the old b.  k must be nonnegative.
+  * NOTE: on memory failure, old b is deallocated. */
+ static Bigint *lshift(Bigint *b, int32 k)
+ {
+     int32 i, k1, n, n1;
+     Bigint *b1;
+     ULong *x, *x1, *xe, z;
+ 
+     n = k >> 5;
+     k1 = b->k;
+     n1 = n + b->wds + 1;
+     for(i = b->maxwds; n1 > i; i <<= 1)
+         k1++;
+     b1 = Balloc(k1);
+     if (!b1)
+         goto done;
+     x1 = b1->x;
+     for(i = 0; i < n; i++)
+         *x1++ = 0;
+     x = b->x;
+     xe = x + b->wds;
+     if (k &= 0x1f) {
+         k1 = 32 - k;
+         z = 0;
+         do {
+             *x1++ = *x << k | z;
+             z = *x++ >> k1;
+         }
+         while(x < xe);
+         if ((*x1 = z) != 0)
+             ++n1;
+     }
+     else do
+         *x1++ = *x++;
+          while(x < xe);
+     b1->wds = n1 - 1;
+ done:
+     Bfree(b);
+     return b1;
+ }
+ 
+ /* Return -1, 0, or 1 depending on whether a<b, a==b, or a>b, respectively. */
+ static int32 cmp(Bigint *a, Bigint *b)
+ {
+     ULong *xa, *xa0, *xb, *xb0;
+     int32 i, j;
+ 
+     i = a->wds;
+     j = b->wds;
+ #ifdef DEBUG
+     if (i > 1 && !a->x[i-1])
+         Bug("cmp called with a->x[a->wds-1] == 0");
+     if (j > 1 && !b->x[j-1])
+         Bug("cmp called with b->x[b->wds-1] == 0");
+ #endif
+     if (i -= j)
+         return i;
+     xa0 = a->x;
+     xa = xa0 + j;
+     xb0 = b->x;
+     xb = xb0 + j;
+     for(;;) {
+         if (*--xa != *--xb)
+             return *xa < *xb ? -1 : 1;
+         if (xa <= xa0)
+             break;
+     }
+     return 0;
+ }
+ 
+ static Bigint *diff(Bigint *a, Bigint *b)
+ {
+     Bigint *c;
+     int32 i, wa, wb;
+     ULong *xa, *xae, *xb, *xbe, *xc;
+ #ifdef ULLong
+     ULLong borrow, y;
+ #else
+     ULong borrow, y;
+     ULong z;
+ #endif
+ 
+     i = cmp(a,b);
+     if (!i) {
+         c = Balloc(0);
+         if (!c)
+             return NULL;
+         c->wds = 1;
+         c->x[0] = 0;
+         return c;
+     }
+     if (i < 0) {
+         c = a;
+         a = b;
+         b = c;
+         i = 1;
+     }
+     else
+         i = 0;
+     c = Balloc(a->k);
+     if (!c)
+         return NULL;
+     c->sign = i;
+     wa = a->wds;
+     xa = a->x;
+     xae = xa + wa;
+     wb = b->wds;
+     xb = b->x;
+     xbe = xb + wb;
+     xc = c->x;
+     borrow = 0;
+ #ifdef ULLong
+     do {
+         y = (ULLong)*xa++ - *xb++ - borrow;
+         borrow = y >> 32 & 1UL;
+         *xc++ = (ULong)(y & 0xffffffffUL);
+         }
+         while(xb < xbe);
+     while(xa < xae) {
+         y = *xa++ - borrow;
+         borrow = y >> 32 & 1UL;
+         *xc++ = (ULong)(y & 0xffffffffUL);
+         }
+ #else
+     do {
+         y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
+         borrow = (y & 0x10000) >> 16;
+         z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
+         borrow = (z & 0x10000) >> 16;
+         Storeinc(xc, z, y);
+         }
+         while(xb < xbe);
+     while(xa < xae) {
+         y = (*xa & 0xffff) - borrow;
+         borrow = (y & 0x10000) >> 16;
+         z = (*xa++ >> 16) - borrow;
+         borrow = (z & 0x10000) >> 16;
+         Storeinc(xc, z, y);
+         }
+ #endif
+     while(!*--xc)
+         wa--;
+     c->wds = wa;
+     return c;
+ }
+ 
+ /* Return the absolute difference between x and the adjacent greater-magnitude double number (ignoring exponent overflows). */
+ static double ulp(double x)
+ {
+     register Long L;
+     double a = 0;
+ 
+     L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
+ #ifndef Sudden_Underflow
+     if (L > 0) {
+ #endif
+         set_word0(a, L);
+         set_word1(a, 0);
+ #ifndef Sudden_Underflow
+     }
+     else {
+         L = -L >> Exp_shift;
+         if (L < Exp_shift) {
+             set_word0(a, 0x80000 >> L);
+             set_word1(a, 0);
+         }
+         else {
+             set_word0(a, 0);
+             L -= Exp_shift;
+             set_word1(a, L >= 31 ? 1 : 1 << (31 - L));
+         }
+     }
+ #endif
+     return a;
+ }
+ 
+ 
+ static double b2d(Bigint *a, int32 *e)
+ {
+     ULong *xa, *xa0, w, y, z;
+     int32 k;
+     double d = 0;
+ #define d0 word0(d)
+ #define d1 word1(d)
+ #define set_d0(x) set_word0(d, x)
+ #define set_d1(x) set_word1(d, x)
+ 
+     xa0 = a->x;
+     xa = xa0 + a->wds;
+     y = *--xa;
+ #ifdef DEBUG
+     if (!y) Bug("zero y in b2d");
+ #endif
+     k = hi0bits(y);
+     *e = 32 - k;
+     if (k < Ebits) {
+         set_d0(Exp_1 | y >> (Ebits - k));
+         w = xa > xa0 ? *--xa : 0;
+         set_d1(y << (32-Ebits + k) | w >> (Ebits - k));
+         goto ret_d;
+     }
+     z = xa > xa0 ? *--xa : 0;
+     if (k -= Ebits) {
+         set_d0(Exp_1 | y << k | z >> (32 - k));
+         y = xa > xa0 ? *--xa : 0;
+         set_d1(z << k | y >> (32 - k));
+     }
+     else {
+         set_d0(Exp_1 | y);
+         set_d1(z);
+     }
+   ret_d:
+ #undef d0
+ #undef d1
+ #undef set_d0
+ #undef set_d1
+     return d;
+ }
+ 
+ 
+ /* Convert d into the form b*2^e, where b is an odd integer.  b is the returned
+  * Bigint and e is the returned binary exponent.  Return the number of significant
+  * bits in b in bits.  d must be finite and nonzero. */
+ static Bigint *d2b(double d, int32 *e, int32 *bits)
+ {
+     Bigint *b;
+     int32 de, i, k;
+     ULong *x, y, z;
+ #define d0 word0(d)
+ #define d1 word1(d)
+ #define set_d0(x) set_word0(d, x)
+ #define set_d1(x) set_word1(d, x)
+ 
+     b = Balloc(1);
+     if (!b)
+         return NULL;
+     x = b->x;
+ 
+     z = d0 & Frac_mask;
+     set_d0(d0 & 0x7fffffff);  /* clear sign bit, which we ignore */
+ #ifdef Sudden_Underflow
+     de = (int32)(d0 >> Exp_shift);
+     z |= Exp_msk11;
+ #else
+     if ((de = (int32)(d0 >> Exp_shift)) != 0)
+         z |= Exp_msk1;
+ #endif
+     if ((y = d1) != 0) {
+         if ((k = lo0bits(&y)) != 0) {
+             x[0] = y | z << (32 - k);
+             z >>= k;
+         }
+         else
+             x[0] = y;
+         i = b->wds = (x[1] = z) ? 2 : 1;
+     }
+     else {
+         JS_ASSERT(z);
+         k = lo0bits(&z);
+         x[0] = z;
+         i = b->wds = 1;
+         k += 32;
+     }
+ #ifndef Sudden_Underflow
+     if (de) {
+ #endif
+         *e = de - Bias - (P-1) + k;
+         *bits = P - k;
+ #ifndef Sudden_Underflow
+     }
+     else {
+         *e = de - Bias - (P-1) + 1 + k;
+         *bits = 32*i - hi0bits(x[i-1]);
+     }
+ #endif
+     return b;
+ }
+ #undef d0
+ #undef d1
+ #undef set_d0
+ #undef set_d1
+ 
+ 
+ static double ratio(Bigint *a, Bigint *b)
+ {
+     double da, db;
+     int32 k, ka, kb;
+ 
+     da = b2d(a, &ka);
+     db = b2d(b, &kb);
+     k = ka - kb + 32*(a->wds - b->wds);
+     if (k > 0)
+         set_word0(da, word0(da) + k*Exp_msk1);
+     else {
+         k = -k;
+         set_word0(db, word0(db) + k*Exp_msk1);
+     }
+     return da / db;
+ }
+ 
+ static CONST double
+ tens[] = {
+     1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
+     1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
+     1e20, 1e21, 1e22
+ };
+ 
+ static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
+ static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
+ #ifdef Avoid_Underflow
+         9007199254740992.e-256
+ #else
+         1e-256
+ #endif
+         };
+ /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
+ /* flag unnecessarily.  It leads to a song and dance at the end of strtod. */
+ #define Scale_Bit 0x10
+ #define n_bigtens 5
+ 
+ 
+ #ifdef INFNAN_CHECK
+ 
+ #ifndef NAN_WORD0
+ #define NAN_WORD0 0x7ff80000
+ #endif
+ 
+ #ifndef NAN_WORD1
+ #define NAN_WORD1 0
+ #endif
+ 
+ static int match(CONST char **sp, char *t)
+ {
+     int c, d;
+     CONST char *s = *sp;
+ 
+     while(d = *t++) {
+         if ((c = *++s) >= 'A' && c <= 'Z')
+             c += 'a' - 'A';
+         if (c != d)
+             return 0;
+         }
+     *sp = s + 1;
+     return 1;
+     }
+ #endif /* INFNAN_CHECK */
+ 
+ 
+ #ifdef JS_THREADSAFE
+ static JSBool initialized = JS_FALSE;
+ 
+ /* hacked replica of nspr _PR_InitDtoa */
+ static void InitDtoa(void)
+ {
+     freelist_lock = PR_NewLock();
+         p5s_lock = PR_NewLock();
+     initialized = JS_TRUE;
+ }
+ #endif
+ 
+ void js_FinishDtoa(void)
+ {
+     int count;
+     Bigint *temp;
+ 
+ #ifdef JS_THREADSAFE
+     if (initialized == JS_TRUE) {
+         PR_DestroyLock(freelist_lock);
+         PR_DestroyLock(p5s_lock);
+         initialized = JS_FALSE;
+     }
+ #endif
+ 
+     /* clear down the freelist array and p5s */
+ 
+     /* static Bigint *freelist[Kmax+1]; */
+     for (count = 0; count <= Kmax; count++) {
+         Bigint **listp = &freelist[count];
+         while ((temp = *listp) != NULL) {
+             *listp = temp->next;
+             free(temp);
+         }
+         freelist[count] = NULL;
+     }
+ 
+     /* static Bigint *p5s; */
+     while (p5s) {
+         temp = p5s;
+         p5s = p5s->next;
+         free(temp);
+     }
+ }
+ 
+ /* nspr2 watcom bug ifdef omitted */
+ 
+ JS_FRIEND_API(double)
+ JS_strtod(CONST char *s00, char **se, int *err)
+ {
+     int32 scale;
+     int32 bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
+         e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
+     CONST char *s, *s0, *s1;
+     double aadj, aadj1, adj, rv, rv0;
+     Long L;
+     ULong y, z;
+     Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
+ 
+     *err = 0;
+ 
+     bb = bd = bs = delta = NULL;
+     sign = nz0 = nz = 0;
+     rv = 0.;
+ 
+     /* Locking for Balloc's shared buffers that will be used in this block */
+     ACQUIRE_DTOA_LOCK();
+ 
+     for(s = s00;;s++) switch(*s) {
+     case '-':
+         sign = 1;
+         /* no break */
+     case '+':
+         if (*++s)
+             goto break2;
+         /* no break */
+     case 0:
+         s = s00;
+         goto ret;
+     case '\t':
+     case '\n':
+     case '\v':
+     case '\f':
+     case '\r':
+     case ' ':
+         continue;
+     default:
+         goto break2;
+     }
+ break2:
+ 
+     if (*s == '0') {
+         nz0 = 1;
+         while(*++s == '0') ;
+         if (!*s)
+             goto ret;
+     }
+     s0 = s;
+     y = z = 0;
+     for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
+         if (nd < 9)
+             y = 10*y + c - '0';
+         else if (nd < 16)
+             z = 10*z + c - '0';
+     nd0 = nd;
+     if (c == '.') {
+         c = *++s;
+         if (!nd) {
+             for(; c == '0'; c = *++s)
+                 nz++;
+             if (c > '0' && c <= '9') {
+                 s0 = s;
+                 nf += nz;
+                 nz = 0;
+                 goto have_dig;
+             }
+             goto dig_done;
+         }
+         for(; c >= '0' && c <= '9'; c = *++s) {
+         have_dig:
+             nz++;
+             if (c -= '0') {
+                 nf += nz;
+                 for(i = 1; i < nz; i++)
+                     if (nd++ < 9)
+                         y *= 10;
+                     else if (nd <= DBL_DIG + 1)
+                         z *= 10;
+                 if (nd++ < 9)
+                     y = 10*y + c;
+                 else if (nd <= DBL_DIG + 1)
+                     z = 10*z + c;
+                 nz = 0;
+             }
+         }
+     }
+ dig_done:
+     e = 0;
+     if (c == 'e' || c == 'E') {
+         if (!nd && !nz && !nz0) {
+             s = s00;
+             goto ret;
+         }
+         s00 = s;
+         esign = 0;
+         switch(c = *++s) {
+         case '-':
+             esign = 1;
+         case '+':
+             c = *++s;
+         }
+         if (c >= '0' && c <= '9') {
+             while(c == '0')
+                 c = *++s;
+             if (c > '0' && c <= '9') {
+                 L = c - '0';
+                 s1 = s;
+                 while((c = *++s) >= '0' && c <= '9')
+                     L = 10*L + c - '0';
+                 if (s - s1 > 8 || L > 19999)
+                     /* Avoid confusion from exponents
+                      * so large that e might overflow.
+                      */
+                     e = 19999; /* safe for 16 bit ints */
+                 else
+                     e = (int32)L;
+                 if (esign)
+                     e = -e;
+             }
+             else
+                 e = 0;
+         }
+         else
+             s = s00;
+     }
+     if (!nd) {
+         if (!nz && !nz0) {
+ #ifdef INFNAN_CHECK
+             /* Check for Nan and Infinity */
+             switch(c) {
+               case 'i':
+               case 'I':
+                 if (match(&s,"nfinity")) {
+                     word0(rv) = 0x7ff00000;
+                     word1(rv) = 0;
+                     goto ret;
+                     }
+                 break;
+               case 'n':
+               case 'N':
+                 if (match(&s, "an")) {
+                     word0(rv) = NAN_WORD0;
+                     word1(rv) = NAN_WORD1;
+                     goto ret;
+                     }
+               }
+ #endif /* INFNAN_CHECK */
+             s = s00;
+             }
+         goto ret;
+     }
+     e1 = e -= nf;
+ 
+     /* Now we have nd0 digits, starting at s0, followed by a
+      * decimal point, followed by nd-nd0 digits.  The number we're
+      * after is the integer represented by those digits times
+      * 10**e */
+ 
+     if (!nd0)
+         nd0 = nd;
+     k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
+     rv = y;
+     if (k > 9)
+         rv = tens[k - 9] * rv + z;
+     bd0 = 0;
+     if (nd <= DBL_DIG
+ #ifndef RND_PRODQUOT
+         && FLT_ROUNDS == 1
+ #endif
+         ) {
+         if (!e)
+             goto ret;
+         if (e > 0) {
+             if (e <= Ten_pmax) {
+                 /* rv = */ rounded_product(rv, tens[e]);
+                 goto ret;
+             }
+             i = DBL_DIG - nd;
+             if (e <= Ten_pmax + i) {
+                 /* A fancier test would sometimes let us do
+                  * this for larger i values.
+                  */
+                 e -= i;
+                 rv *= tens[i];
+                 /* rv = */ rounded_product(rv, tens[e]);
+                 goto ret;
+             }
+         }
+ #ifndef Inaccurate_Divide
+         else if (e >= -Ten_pmax) {
+             /* rv = */ rounded_quotient(rv, tens[-e]);
+             goto ret;
+         }
+ #endif
+     }
+     e1 += nd - k;
+ 
+     scale = 0;
+ 
+     /* Get starting approximation = rv * 10**e1 */
+ 
+     if (e1 > 0) {
+         if ((i = e1 & 15) != 0)
+             rv *= tens[i];
+         if (e1 &= ~15) {
+             if (e1 > DBL_MAX_10_EXP) {
+             ovfl:
+                 *err = JS_DTOA_ERANGE;
+ #ifdef __STDC__
+                 rv = HUGE_VAL;
+ #else
+                 /* Can't trust HUGE_VAL */
+                 word0(rv) = Exp_mask;
+                 word1(rv) = 0;
+ #endif
+                 if (bd0)
+                     goto retfree;
+                 goto ret;
+             }
+             e1 >>= 4;
+             for(j = 0; e1 > 1; j++, e1 >>= 1)
+                 if (e1 & 1)
+                     rv *= bigtens[j];
+             /* The last multiplication could overflow. */
+             set_word0(rv, word0(rv) - P*Exp_msk1);
+             rv *= bigtens[j];
+             if ((z = word0(rv) & Exp_mask) > Exp_msk1*(DBL_MAX_EXP+Bias-P))
+                 goto ovfl;
+             if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
+                 /* set to largest number */
+                 /* (Can't trust DBL_MAX) */
+                 set_word0(rv, Big0);
+                 set_word1(rv, Big1);
+                 }
+             else
+                 set_word0(rv, word0(rv) + P*Exp_msk1);
+             }
+     }
+     else if (e1 < 0) {
+         e1 = -e1;
+         if ((i = e1 & 15) != 0)
+             rv /= tens[i];
+         if (e1 &= ~15) {
+             e1 >>= 4;
+             if (e1 >= 1 << n_bigtens)
+                 goto undfl;
+ #ifdef Avoid_Underflow
+             if (e1 & Scale_Bit)
+                 scale = P;
+             for(j = 0; e1 > 0; j++, e1 >>= 1)
+                 if (e1 & 1)
+                     rv *= tinytens[j];
+             if (scale && (j = P + 1 - ((word0(rv) & Exp_mask)
+                         >> Exp_shift)) > 0) {
+                 /* scaled rv is denormal; zap j low bits */
+                 if (j >= 32) {
+                     set_word1(rv, 0);
+                     set_word0(rv, word0(rv) & (0xffffffff << (j-32)));
+                     if (!word0(rv))
+                         set_word0(rv, 1);
+                     }
+                 else
+                     set_word1(rv, word1(rv) & (0xffffffff << j));
+                 }
+ #else
+             for(j = 0; e1 > 1; j++, e1 >>= 1)
+                 if (e1 & 1)
+                     rv *= tinytens[j];
+             /* The last multiplication could underflow. */
+             rv0 = rv;
+             rv *= tinytens[j];
+             if (!rv) {
+                 rv = 2.*rv0;
+                 rv *= tinytens[j];
+ #endif
+                 if (!rv) {
+                 undfl:
+                     rv = 0.;
+                     *err = JS_DTOA_ERANGE;
+                     if (bd0)
+                         goto retfree;
+                     goto ret;
+                 }
+ #ifndef Avoid_Underflow
+                 set_word0(rv, Tiny0);
+                 set_word1(rv, Tiny1);
+                 /* The refinement below will clean
+                  * this approximation up.
+                  */
+             }
+ #endif
+         }
+     }
+ 
+     /* Now the hard part -- adjusting rv to the correct value.*/
+ 
+     /* Put digits into bd: true value = bd * 10^e */
+ 
+     bd0 = s2b(s0, nd0, nd, y);
+     if (!bd0)
+         goto nomem;
+ 
+     for(;;) {
+         bd = Balloc(bd0->k);
+         if (!bd)
+             goto nomem;
+         Bcopy(bd, bd0);
+         bb = d2b(rv, &bbe, &bbbits);    /* rv = bb * 2^bbe */
+         if (!bb)
+             goto nomem;
+         bs = i2b(1);
+         if (!bs)
+             goto nomem;
+ 
+         if (e >= 0) {
+             bb2 = bb5 = 0;
+             bd2 = bd5 = e;
+         }
+         else {
+             bb2 = bb5 = -e;
+             bd2 = bd5 = 0;
+         }
+         if (bbe >= 0)
+             bb2 += bbe;
+         else
+             bd2 -= bbe;
+         bs2 = bb2;
+ #ifdef Sudden_Underflow
+         j = P + 1 - bbbits;
+ #else
+ #ifdef Avoid_Underflow
+         j = bbe - scale;
+ #else
+         j = bbe;
+ #endif
+         i = j + bbbits - 1; /* logb(rv) */
+         if (i < Emin)   /* denormal */
+             j += P - Emin;
+         else
+             j = P + 1 - bbbits;
+ #endif
+         bb2 += j;
+         bd2 += j;
+ #ifdef Avoid_Underflow
+         bd2 += scale;
+ #endif
+         i = bb2 < bd2 ? bb2 : bd2;
+         if (i > bs2)
+             i = bs2;
+         if (i > 0) {
+             bb2 -= i;
+             bd2 -= i;
+             bs2 -= i;
+         }
+         if (bb5 > 0) {
+             bs = pow5mult(bs, bb5);
+             if (!bs)
+                 goto nomem;
+             bb1 = mult(bs, bb);
+             if (!bb1)
+                 goto nomem;
+             Bfree(bb);
+             bb = bb1;
+         }
+         if (bb2 > 0) {
+             bb = lshift(bb, bb2);
+             if (!bb)
+                 goto nomem;
+         }
+         if (bd5 > 0) {
+             bd = pow5mult(bd, bd5);
+             if (!bd)
+                 goto nomem;
+         }
+         if (bd2 > 0) {
+             bd = lshift(bd, bd2);
+             if (!bd)
+                 goto nomem;
+         }
+         if (bs2 > 0) {
+             bs = lshift(bs, bs2);
+             if (!bs)
+                 goto nomem;
+         }
+         delta = diff(bb, bd);
+         if (!delta)
+             goto nomem;
+         dsign = delta->sign;
+         delta->sign = 0;
+         i = cmp(delta, bs);
+         if (i < 0) {
+             /* Error is less than half an ulp -- check for
+              * special case of mantissa a power of two.
+              */
+             if (dsign || word1(rv) || word0(rv) & Bndry_mask
+ #ifdef Avoid_Underflow
+              || (word0(rv) & Exp_mask) <= Exp_msk1 + P*Exp_msk1
+ #else
+              || (word0(rv) & Exp_mask) <= Exp_msk1
+ #endif
+                 ) {
+ #ifdef Avoid_Underflow
+                 if (!delta->x[0] && delta->wds == 1)
+                     dsign = 2;
+ #endif
+                 break;
+                 }
+             delta = lshift(delta,Log2P);
+             if (!delta)
+                 goto nomem;
+             if (cmp(delta, bs) > 0)
+                 goto drop_down;
+             break;
+         }
+         if (i == 0) {
+             /* exactly half-way between */
+             if (dsign) {
+                 if ((word0(rv) & Bndry_mask1) == Bndry_mask1
+                     &&  word1(rv) == 0xffffffff) {
+                     /*boundary case -- increment exponent*/
+                     set_word0(rv, (word0(rv) & Exp_mask) + Exp_msk1);
+                     set_word1(rv, 0);
+ #ifdef Avoid_Underflow
+                     dsign = 0;
+ #endif
+                     break;
+                 }
+             }
+             else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
+ #ifdef Avoid_Underflow
+                 dsign = 2;
+ #endif
+             drop_down:
+                 /* boundary case -- decrement exponent */
+ #ifdef Sudden_Underflow
+                 L = word0(rv) & Exp_mask;
+                 if (L <= Exp_msk1)
+                     goto undfl;
+                 L -= Exp_msk1;
+ #else
+                 L = (word0(rv) & Exp_mask) - Exp_msk1;
+ #endif
+                 set_word0(rv, L | Bndry_mask1);
+                 set_word1(rv, 0xffffffff);
+                 break;
+             }
+ #ifndef ROUND_BIASED
+             if (!(word1(rv) & LSB))
+                 break;
+ #endif
+             if (dsign)
+                 rv += ulp(rv);
+ #ifndef ROUND_BIASED
+             else {
+                 rv -= ulp(rv);
+ #ifndef Sudden_Underflow
+                 if (!rv)
+                     goto undfl;
+ #endif
+             }
+ #ifdef Avoid_Underflow
+             dsign = 1 - dsign;
+ #endif
+ #endif
+             break;
+         }
+         if ((aadj = ratio(delta, bs)) <= 2.) {
+             if (dsign)
+                 aadj = aadj1 = 1.;
+             else if (word1(rv) || word0(rv) & Bndry_mask) {
+ #ifndef Sudden_Underflow
+                 if (word1(rv) == Tiny1 && !word0(rv))
+                     goto undfl;
+ #endif
+                 aadj = 1.;
+                 aadj1 = -1.;
+             }
+             else {
+                 /* special case -- power of FLT_RADIX to be */
+                 /* rounded down... */
+ 
+                 if (aadj < 2./FLT_RADIX)
+                     aadj = 1./FLT_RADIX;
+                 else
+                     aadj *= 0.5;
+                 aadj1 = -aadj;
+             }
+         }
+         else {
+             aadj *= 0.5;
+             aadj1 = dsign ? aadj : -aadj;
+ #ifdef Check_FLT_ROUNDS
+             switch(FLT_ROUNDS) {
+             case 2: /* towards +infinity */
+                 aadj1 -= 0.5;
+                 break;
+             case 0: /* towards 0 */
+             case 3: /* towards -infinity */
+                 aadj1 += 0.5;
+             }
+ #else
+             if (FLT_ROUNDS == 0)
+                 aadj1 += 0.5;
+ #endif
+         }
+         y = word0(rv) & Exp_mask;
+ 
+         /* Check for overflow */
+ 
+         if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
+             rv0 = rv;
+             set_word0(rv, word0(rv) - P*Exp_msk1);
+             adj = aadj1 * ulp(rv);
+             rv += adj;
+             if ((word0(rv) & Exp_mask) >=
+                 Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
+                 if (word0(rv0) == Big0 && word1(rv0) == Big1)
+                     goto ovfl;
+                 set_word0(rv, Big0);
+                 set_word1(rv, Big1);
+                 goto cont;
+             }
+             else
+                 set_word0(rv, word0(rv) + P*Exp_msk1);
+         }
+         else {
+ #ifdef Sudden_Underflow
+             if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
+                 rv0 = rv;
+                 set_word0(rv, word0(rv) + P*Exp_msk1);
+                 adj = aadj1 * ulp(rv);
+                 rv += adj;
+                     if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
+                         {
+                             if (word0(rv0) == Tiny0
+                                 && word1(rv0) == Tiny1)
+                                 goto undfl;
+                             set_word0(rv, Tiny0);
+                             set_word1(rv, Tiny1);
+                             goto cont;
+                         }
+                     else
+                         set_word0(rv, word0(rv) - P*Exp_msk1);
+             }
+             else {
+                 adj = aadj1 * ulp(rv);
+                 rv += adj;
+             }
+ #else
+             /* Compute adj so that the IEEE rounding rules will
+              * correctly round rv + adj in some half-way cases.
+              * If rv * ulp(rv) is denormalized (i.e.,
+              * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
+              * trouble from bits lost to denormalization;
+              * example: 1.2e-307 .
+              */
+ #ifdef Avoid_Underflow
+             if (y <= P*Exp_msk1 && aadj > 1.)
+ #else
+             if (y <= (P-1)*Exp_msk1 && aadj > 1.)
+ #endif
+                 {
+                 aadj1 = (double)(int32)(aadj + 0.5);
+                 if (!dsign)
+                     aadj1 = -aadj1;
+             }
+ #ifdef Avoid_Underflow
+             if (scale && y <= P*Exp_msk1)
+                 set_word0(aadj1, word0(aadj1) + (P+1)*Exp_msk1 - y);
+ #endif
+             adj = aadj1 * ulp(rv);
+             rv += adj;
+ #endif
+         }
+         z = word0(rv) & Exp_mask;
+ #ifdef Avoid_Underflow
+         if (!scale)
+ #endif
+         if (y == z) {
+             /* Can we stop now? */
+             L = (Long)aadj;
+             aadj -= L;
+             /* The tolerances below are conservative. */
+             if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
+                 if (aadj < .4999999 || aadj > .5000001)
+                     break;
+             }
+             else if (aadj < .4999999/FLT_RADIX)
+                 break;
+         }
+     cont:
+         Bfree(bb);
+         Bfree(bd);
+         Bfree(bs);
+         Bfree(delta);
+         bb = bd = bs = delta = NULL;
+     }
+ #ifdef Avoid_Underflow
+     if (scale) {
+         set_word0(rv0, Exp_1 - P*Exp_msk1);
+         set_word1(rv0, 0);
+         if ((word0(rv) & Exp_mask) <= P*Exp_msk1
+               && word1(rv) & 1
+               && dsign != 2) {
+             if (dsign) {
+ #ifdef Sudden_Underflow
+                 /* rv will be 0, but this would give the  */
+                 /* right result if only rv *= rv0 worked. */
+                 set_word0(rv, word0(rv) + P*Exp_msk1);
+                 set_word0(rv0, Exp_1 - 2*P*Exp_msk1);
+ #endif
+                 rv += ulp(rv);
+                 }
+             else
+                 set_word1(rv, word1(rv) & ~1);
+         }
+         rv *= rv0;
+     }
+ #endif /* Avoid_Underflow */
+ retfree:
+     Bfree(bb);
+     Bfree(bd);
+     Bfree(bs);
+     Bfree(bd0);
+     Bfree(delta);
+ ret:
+     RELEASE_DTOA_LOCK();
+     if (se)
+         *se = (char *)s;
+     return sign ? -rv : rv;
+ 
+ nomem:
+     Bfree(bb);
+     Bfree(bd);
+     Bfree(bs);
+     Bfree(bd0);
+     Bfree(delta);
+     *err = JS_DTOA_ENOMEM;
+     return 0;
+ }
+ 
+ 
+ /* Return floor(b/2^k) and set b to be the remainder.  The returned quotient must be less than 2^32. */
+ static uint32 quorem2(Bigint *b, int32 k)
+ {
+     ULong mask;
+     ULong result;
+     ULong *bx, *bxe;
+     int32 w;
+     int32 n = k >> 5;
+     k &= 0x1F;
+     mask = (1<<k) - 1;
+ 
+     w = b->wds - n;
+     if (w <= 0)
+         return 0;
+     JS_ASSERT(w <= 2);
+     bx = b->x;
+     bxe = bx + n;
+     result = *bxe >> k;
+     *bxe &= mask;
+     if (w == 2) {
+         JS_ASSERT(!(bxe[1] & ~mask));
+         if (k)
+             result |= bxe[1] << (32 - k);
+     }
+     n++;
+     while (!*bxe && bxe != bx) {
+         n--;
+         bxe--;
+     }
+     b->wds = n;
+     return result;
+ }
+ 
+ /* Return floor(b/S) and set b to be the remainder.  As added restrictions, b must not have
+  * more words than S, the most significant word of S must not start with a 1 bit, and the
+  * returned quotient must be less than 36. */
+ static int32 quorem(Bigint *b, Bigint *S)
+ {
+     int32 n;
+     ULong *bx, *bxe, q, *sx, *sxe;
+ #ifdef ULLong
+     ULLong borrow, carry, y, ys;
+ #else
+     ULong borrow, carry, y, ys;
+     ULong si, z, zs;
+ #endif
+ 
+     n = S->wds;
+     JS_ASSERT(b->wds <= n);
+     if (b->wds < n)
+         return 0;
+     sx = S->x;
+     sxe = sx + --n;
+     bx = b->x;
+     bxe = bx + n;
+     JS_ASSERT(*sxe <= 0x7FFFFFFF);
+     q = *bxe / (*sxe + 1);  /* ensure q <= true quotient */
+     JS_ASSERT(q < 36);
+     if (q) {
+         borrow = 0;
+         carry = 0;
+         do {
+ #ifdef ULLong
+             ys = *sx++ * (ULLong)q + carry;
+             carry = ys >> 32;
+             y = *bx - (ys & 0xffffffffUL) - borrow;
+             borrow = y >> 32 & 1UL;
+             *bx++ = (ULong)(y & 0xffffffffUL);
+ #else
+             si = *sx++;
+             ys = (si & 0xffff) * q + carry;
+             zs = (si >> 16) * q + (ys >> 16);
+             carry = zs >> 16;
+             y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
+             borrow = (y & 0x10000) >> 16;
+             z = (*bx >> 16) - (zs & 0xffff) - borrow;
+             borrow = (z & 0x10000) >> 16;
+             Storeinc(bx, z, y);
+ #endif
+         }
+         while(sx <= sxe);
+         if (!*bxe) {
+             bx = b->x;
+             while(--bxe > bx && !*bxe)
+                 --n;
+             b->wds = n;
+         }
+     }
+     if (cmp(b, S) >= 0) {
+         q++;
+         borrow = 0;
+         carry = 0;
+         bx = b->x;
+         sx = S->x;
+         do {
+ #ifdef ULLong
+             ys = *sx++ + carry;
+             carry = ys >> 32;
+             y = *bx - (ys & 0xffffffffUL) - borrow;
+             borrow = y >> 32 & 1UL;
+             *bx++ = (ULong)(y & 0xffffffffUL);
+ #else
+             si = *sx++;
+             ys = (si & 0xffff) + carry;
+             zs = (si >> 16) + (ys >> 16);
+             carry = zs >> 16;
+             y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
+             borrow = (y & 0x10000) >> 16;
+             z = (*bx >> 16) - (zs & 0xffff) - borrow;
+             borrow = (z & 0x10000) >> 16;
+             Storeinc(bx, z, y);
+ #endif
+         } while(sx <= sxe);
+         bx = b->x;
+         bxe = bx + n;
+         if (!*bxe) {
+             while(--bxe > bx && !*bxe)
+                 --n;
+             b->wds = n;
+         }
+     }
+     return (int32)q;
+ }
+ 
+ /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
+  *
+  * Inspired by "How to Print Floating-Point Numbers Accurately" by
+  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
+  *
+  * Modifications:
+  *  1. Rather than iterating, we use a simple numeric overestimate
+  *     to determine k = floor(log10(d)).  We scale relevant
+  *     quantities using O(log2(k)) rather than O(k) multiplications.
+  *  2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
+  *     try to generate digits strictly left to right.  Instead, we
+  *     compute with fewer bits and propagate the carry if necessary
+  *     when rounding the final digit up.  This is often faster.
+  *  3. Under the assumption that input will be rounded nearest,
+  *     mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
+  *     That is, we allow equality in stopping tests when the
+  *     round-nearest rule will give the same floating-point value
+  *     as would satisfaction of the stopping test with strict
+  *     inequality.
+  *  4. We remove common factors of powers of 2 from relevant
+  *     quantities.
+  *  5. When converting floating-point integers less than 1e16,
+  *     we use floating-point arithmetic rather than resorting
+  *     to multiple-precision integers.
+  *  6. When asked to produce fewer than 15 digits, we first try
+  *     to get by with floating-point arithmetic; we resort to
+  *     multiple-precision integer arithmetic only if we cannot
+  *     guarantee that the floating-point calculation has given
+  *     the correctly rounded result.  For k requested digits and
+  *     "uniformly" distributed input, the probability is
+  *     something like 10^(k-15) that we must resort to the Long
+  *     calculation.
+  */
+ 
+ /* Always emits at least one digit. */
+ /* If biasUp is set, then rounding in modes 2 and 3 will round away from zero
+  * when the number is exactly halfway between two representable values.  For example,
+  * rounding 2.5 to zero digits after the decimal point will return 3 and not 2.
+  * 2.49 will still round to 2, and 2.51 will still round to 3. */
+ /* bufsize should be at least 20 for modes 0 and 1.  For the other modes,
+  * bufsize should be two greater than the maximum number of output characters expected. */
+ static JSBool
+ js_dtoa(double d, int mode, JSBool biasUp, int ndigits,
+     int *decpt, int *sign, char **rve, char *buf, size_t bufsize)
+ {
+     /*  Arguments ndigits, decpt, sign are similar to those
+         of ecvt and fcvt; trailing zeros are suppressed from
+         the returned string.  If not null, *rve is set to point
+         to the end of the return value.  If d is +-Infinity or NaN,
+         then *decpt is set to 9999.
+ 
+         mode:
+         0 ==> shortest string that yields d when read in
+         and rounded to nearest.
+         1 ==> like 0, but with Steele & White stopping rule;
+         e.g. with IEEE P754 arithmetic , mode 0 gives
+         1e23 whereas mode 1 gives 9.999999999999999e22.
+         2 ==> max(1,ndigits) significant digits.  This gives a
+         return value similar to that of ecvt, except
+         that trailing zeros are suppressed.
+         3 ==> through ndigits past the decimal point.  This
+         gives a return value similar to that from fcvt,
+         except that trailing zeros are suppressed, and
+         ndigits can be negative.
+         4-9 should give the same return values as 2-3, i.e.,
+         4 <= mode <= 9 ==> same return as mode
+         2 + (mode & 1).  These modes are mainly for
+         debugging; often they run slower but sometimes
+         faster than modes 2-3.
+         4,5,8,9 ==> left-to-right digit generation.
+         6-9 ==> don't try fast floating-point estimate
+         (if applicable).
+ 
+         Values of mode other than 0-9 are treated as mode 0.
+ 
+         Sufficient space is allocated to the return value
+         to hold the suppressed trailing zeros.
+     */
+ 
+     int32 bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
+         j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
+         spec_case, try_quick;
+     Long L;
+ #ifndef Sudden_Underflow
+     int32 denorm;
+     ULong x;
+ #endif
+     Bigint *b, *b1, *delta, *mlo, *mhi, *S;
+     double d2, ds, eps;
+     char *s;
+ 
+     if (word0(d) & Sign_bit) {
+         /* set sign for everything, including 0's and NaNs */
+         *sign = 1;
+         set_word0(d, word0(d) & ~Sign_bit);  /* clear sign bit */
+     }
+     else
+         *sign = 0;
+ 
+     if ((word0(d) & Exp_mask) == Exp_mask) {
+         /* Infinity or NaN */
+         *decpt = 9999;
+         s = !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN";
+         if ((s[0] == 'I' && bufsize < 9) || (s[0] == 'N' && bufsize < 4)) {
+             JS_ASSERT(JS_FALSE);
+ /*          JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */
+             return JS_FALSE;
+         }
+         strcpy(buf, s);
+         if (rve) {
+             *rve = buf[3] ? buf + 8 : buf + 3;
+             JS_ASSERT(**rve == '\0');
+         }
+         return JS_TRUE;
+     }
+ 
+     b = NULL;                           /* initialize for abort protection */
+     S = NULL;
+     mlo = mhi = NULL;
+ 
+     if (!d) {
+       no_digits:
+         *decpt = 1;
+         if (bufsize < 2) {
+             JS_ASSERT(JS_FALSE);
+ /*          JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */
+             return JS_FALSE;
+         }
+         buf[0] = '0'; buf[1] = '\0';  /* copy "0" to buffer */
+         if (rve)
+             *rve = buf + 1;
+         /* We might have jumped to "no_digits" from below, so we need
+          * to be sure to free the potentially allocated Bigints to avoid
+          * memory leaks. */
+         Bfree(b);
+         Bfree(S);
+         if (mlo != mhi)
+             Bfree(mlo);
+         Bfree(mhi);
+         return JS_TRUE;
+     }
+ 
+     b = d2b(d, &be, &bbits);
+     if (!b)
+         goto nomem;
+ #ifdef Sudden_Underflow
+     i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
+ #else
+     if ((i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) {
+ #endif
+         d2 = d;
+         set_word0(d2, word0(d2) & Frac_mask1);
+         set_word0(d2, word0(d2) | Exp_11);
+ 
+         /* log(x)   ~=~ log(1.5) + (x-1.5)/1.5
+          * log10(x)  =  log(x) / log(10)
+          *      ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
+          * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
+          *
+          * This suggests computing an approximation k to log10(d) by
+          *
+          * k = (i - Bias)*0.301029995663981
+          *  + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
+          *
+          * We want k to be too large rather than too small.
+          * The error in the first-order Taylor series approximation
+          * is in our favor, so we just round up the constant enough
+          * to compensate for any error in the multiplication of
+          * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
+          * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
+          * adding 1e-13 to the constant term more than suffices.
+          * Hence we adjust the constant term to 0.1760912590558.
+          * (We could get a more accurate k by invoking log10,
+          *  but this is probably not worthwhile.)
+          */
+ 
+         i -= Bias;
+ #ifndef Sudden_Underflow
+         denorm = 0;
+     }
+     else {
+         /* d is denormalized */
+ 
+         i = bbits + be + (Bias + (P-1) - 1);
+         x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) : word1(d) << (32 - i);
+         d2 = x;
+         set_word0(d2, word0(d2) - 31*Exp_msk1); /* adjust exponent */
+         i -= (Bias + (P-1) - 1) + 1;
+         denorm = 1;
+     }
+ #endif
+     /* At this point d = f*2^i, where 1 <= f < 2.  d2 is an approximation of f. */
+     ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
+     k = (int32)ds;
+     if (ds < 0. && ds != k)
+         k--;    /* want k = floor(ds) */
+     k_check = 1;
+     if (k >= 0 && k <= Ten_pmax) {
+         if (d < tens[k])
+             k--;
+         k_check = 0;
+     }
+     /* At this point floor(log10(d)) <= k <= floor(log10(d))+1.
+        If k_check is zero, we're guaranteed that k = floor(log10(d)). */
+     j = bbits - i - 1;
+     /* At this point d = b/2^j, where b is an odd integer. */
+     if (j >= 0) {
+         b2 = 0;
+         s2 = j;
+     }
+     else {
+         b2 = -j;
+         s2 = 0;
+     }
+     if (k >= 0) {
+         b5 = 0;
+         s5 = k;
+         s2 += k;
+     }
+     else {
+         b2 -= k;
+         b5 = -k;
+         s5 = 0;
+     }
+     /* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer,
+        b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */
+     if (mode < 0 || mode > 9)
+         mode = 0;
+     try_quick = 1;
+     if (mode > 5) {
+         mode -= 4;
+         try_quick = 0;
+     }
+     leftright = 1;
+     ilim = ilim1 = 0;
+     switch(mode) {
+     case 0:
+     case 1:
+         ilim = ilim1 = -1;
+         i = 18;
+         ndigits = 0;
+         break;
+     case 2:
+         leftright = 0;
+         /* no break */
+     case 4:
+         if (ndigits <= 0)
+             ndigits = 1;
+         ilim = ilim1 = i = ndigits;
+         break;
+     case 3:
+         leftright = 0;
+         /* no break */
+     case 5:
+         i = ndigits + k + 1;
+         ilim = i;
+         ilim1 = i - 1;
+         if (i <= 0)
+             i = 1;
+     }
+     /* ilim is the maximum number of significant digits we want, based on k and ndigits. */
+     /* ilim1 is the maximum number of significant digits we want, based on k and ndigits,
+        when it turns out that k was computed too high by one. */
+ 
+     /* Ensure space for at least i+1 characters, including trailing null. */
+     if (bufsize <= (size_t)i) {
+         Bfree(b);
+         JS_ASSERT(JS_FALSE);
+         return JS_FALSE;
+     }
+     s = buf;
+ 
+     if (ilim >= 0 && ilim <= Quick_max && try_quick) {
+ 
+         /* Try to get by with floating-point arithmetic. */
+ 
+         i = 0;
+         d2 = d;
+         k0 = k;
+         ilim0 = ilim;
+         ieps = 2; /* conservative */
+         /* Divide d by 10^k, keeping track of the roundoff error and avoiding overflows. */
+         if (k > 0) {
+             ds = tens[k&0xf];
+             j = k >> 4;
+             if (j & Bletch) {
+                 /* prevent overflows */
+                 j &= Bletch - 1;
+                 d /= bigtens[n_bigtens-1];
+                 ieps++;
+             }
+             for(; j; j >>= 1, i++)
+                 if (j & 1) {
+                     ieps++;
+                     ds *= bigtens[i];
+                 }
+             d /= ds;
+         }
+         else if ((j1 = -k) != 0) {
+             d *= tens[j1 & 0xf];
+             for(j = j1 >> 4; j; j >>= 1, i++)
+                 if (j & 1) {
+                     ieps++;
+                     d *= bigtens[i];
+                 }
+         }
+         /* Check that k was computed correctly. */
+         if (k_check && d < 1. && ilim > 0) {
+             if (ilim1 <= 0)
+                 goto fast_failed;
+             ilim = ilim1;
+             k--;
+             d *= 10.;
+             ieps++;
+         }
+         /* eps bounds the cumulative error. */
+         eps = ieps*d + 7.;
+         set_word0(eps, word0(eps) - (P-1)*Exp_msk1);
+         if (ilim == 0) {
+             S = mhi = 0;
+             d -= 5.;
+             if (d > eps)
+                 goto one_digit;
+             if (d < -eps)
+                 goto no_digits;
+             goto fast_failed;
+         }
+ #ifndef No_leftright
+         if (leftright) {
+             /* Use Steele & White method of only
+              * generating digits needed.
+              */
+             eps = 0.5/tens[ilim-1] - eps;
+             for(i = 0;;) {
+                 L = (Long)d;
+                 d -= L;
+                 *s++ = '0' + (char)L;
+                 if (d < eps)
+                     goto ret1;
+                 if (1. - d < eps)
+                     goto bump_up;
+                 if (++i >= ilim)
+                     break;
+                 eps *= 10.;
+                 d *= 10.;
+             }
+         }
+         else {
+ #endif
+             /* Generate ilim digits, then fix them up. */
+             eps *= tens[ilim-1];
+             for(i = 1;; i++, d *= 10.) {
+                 L = (Long)d;
+                 d -= L;
+                 *s++ = '0' + (char)L;
+                 if (i == ilim) {
+                     if (d > 0.5 + eps)
+                         goto bump_up;
+                     else if (d < 0.5 - eps) {
+                         while(*--s == '0') ;
+                         s++;
+                         goto ret1;
+                     }
+                     break;
+                 }
+             }
+ #ifndef No_leftright
+         }
+ #endif
+     fast_failed:
+         s = buf;
+         d = d2;
+         k = k0;
+         ilim = ilim0;
+     }
+ 
+     /* Do we have a "small" integer? */
+ 
+     if (be >= 0 && k <= Int_max) {
+         /* Yes. */
+         ds = tens[k];
+         if (ndigits < 0 && ilim <= 0) {
+             S = mhi = 0;
+             if (ilim < 0 || d < 5*ds || (!biasUp && d == 5*ds))
+                 goto no_digits;
+             goto one_digit;
+         }
+         for(i = 1;; i++) {
+             L = (Long) (d / ds);
+             d -= L*ds;
+ #ifdef Check_FLT_ROUNDS
+             /* If FLT_ROUNDS == 2, L will usually be high by 1 */
+             if (d < 0) {
+                 L--;
+                 d += ds;
+             }
+ #endif
+             *s++ = '0' + (char)L;
+             if (i == ilim) {
+                 d += d;
+                 if ((d > ds) || (d == ds && (L & 1 || biasUp))) {
+                 bump_up:
+                     while(*--s == '9')
+                         if (s == buf) {
+                             k++;
+                             *s = '0';
+                             break;
+                         }
+                     ++*s++;
+                 }
+                 break;
+             }
+             if (!(d *= 10.))
+                 break;
+         }
+         goto ret1;
+     }
+ 
+     m2 = b2;
+     m5 = b5;
+     if (leftright) {
+         if (mode < 2) {
+             i =
+ #ifndef Sudden_Underflow
+                 denorm ? be + (Bias + (P-1) - 1 + 1) :
+ #endif
+             1 + P - bbits;
+             /* i is 1 plus the number of trailing zero bits in d's significand. Thus,
+                (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 lsb of d)/10^k. */
+         }
+         else {
+             j = ilim - 1;
+             if (m5 >= j)
+                 m5 -= j;
+             else {
+                 s5 += j -= m5;
+                 b5 += j;
+                 m5 = 0;
+             }
+             if ((i = ilim) < 0) {
+                 m2 -= i;
+                 i = 0;
+             }
+             /* (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 * 10^(1-ilim))/10^k. */
+         }
+         b2 += i;
+         s2 += i;
+         mhi = i2b(1);
+         if (!mhi)
+             goto nomem;
+         /* (mhi * 2^m2 * 5^m5) / (2^s2 * 5^s5) = one-half of last printed (when mode >= 2) or
+            input (when mode < 2) significant digit, divided by 10^k. */
+     }
+     /* We still have d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5).  Reduce common factors in
+        b2, m2, and s2 without changing the equalities. */
+     if (m2 > 0 && s2 > 0) {
+         i = m2 < s2 ? m2 : s2;
+         b2 -= i;
+         m2 -= i;
+         s2 -= i;
+     }
+ 
+     /* Fold b5 into b and m5 into mhi. */
+     if (b5 > 0) {
+         if (leftright) {
+             if (m5 > 0) {
+                 mhi = pow5mult(mhi, m5);
+                 if (!mhi)
+                     goto nomem;
+                 b1 = mult(mhi, b);
+                 if (!b1)
+                     goto nomem;
+                 Bfree(b);
+                 b = b1;
+             }
+             if ((j = b5 - m5) != 0) {
+                 b = pow5mult(b, j);
+                 if (!b)
+                     goto nomem;
+             }
+         }
+         else {
+             b = pow5mult(b, b5);
+             if (!b)
+                 goto nomem;
+         }
+     }
+     /* Now we have d/10^k = (b * 2^b2) / (2^s2 * 5^s5) and
+        (mhi * 2^m2) / (2^s2 * 5^s5) = one-half of last printed or input significant digit, divided by 10^k. */
+ 
+     S = i2b(1);
+     if (!S)
+         goto nomem;
+     if (s5 > 0) {
+         S = pow5mult(S, s5);
+         if (!S)
+             goto nomem;
+     }
+     /* Now we have d/10^k = (b * 2^b2) / (S * 2^s2) and
+        (mhi * 2^m2) / (S * 2^s2) = one-half of last printed or input significant digit, divided by 10^k. */
+ 
+     /* Check for special case that d is a normalized power of 2. */
+     spec_case = 0;
+     if (mode < 2) {
+         if (!word1(d) && !(word0(d) & Bndry_mask)
+ #ifndef Sudden_Underflow
+             && word0(d) & (Exp_mask & Exp_mask << 1)
+ #endif
+             ) {
+             /* The special case.  Here we want to be within a quarter of the last input
+                significant digit instead of one half of it when the decimal output string's value is less than d.  */
+             b2 += Log2P;
+             s2 += Log2P;
+             spec_case = 1;
+         }
+     }
+ 
+     /* Arrange for convenient computation of quotients:
+      * shift left if necessary so divisor has 4 leading 0 bits.
+      *
+      * Perhaps we should just compute leading 28 bits of S once
+      * and for all and pass them and a shift to quorem, so it
+      * can do shifts and ors to compute the numerator for q.
+      */
+     if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0)
+         i = 32 - i;
+     /* i is the number of leading zero bits in the most significant word of S*2^s2. */
+     if (i > 4) {
+         i -= 4;
+         b2 += i;
+         m2 += i;
+         s2 += i;
+     }
+     else if (i < 4) {
+         i += 28;
+         b2 += i;
+         m2 += i;
+         s2 += i;
+     }
+     /* Now S*2^s2 has exactly four leading zero bits in its most significant word. */
+     if (b2 > 0) {
+         b = lshift(b, b2);
+         if (!b)
+             goto nomem;
+     }
+     if (s2 > 0) {
+         S = lshift(S, s2);
+         if (!S)
+             goto nomem;
+     }
+     /* Now we have d/10^k = b/S and
+        (mhi * 2^m2) / S = maximum acceptable error, divided by 10^k. */
+     if (k_check) {
+         if (cmp(b,S) < 0) {
+             k--;
+             b = multadd(b, 10, 0);  /* we botched the k estimate */
+             if (!b)
+                 goto nomem;
+             if (leftright) {
+                 mhi = multadd(mhi, 10, 0);
+                 if (!mhi)
+                     goto nomem;
+             }
+             ilim = ilim1;
+         }
+     }
+     /* At this point 1 <= d/10^k = b/S < 10. */
+ 
+     if (ilim <= 0 && mode > 2) {
+         /* We're doing fixed-mode output and d is less than the minimum nonzero output in this mode.
+            Output either zero or the minimum nonzero output depending on which is closer to d. */
+         if (ilim < 0)
+             goto no_digits;
+         S = multadd(S,5,0);
+         if (!S)
+             goto nomem;
+         i = cmp(b,S);
+         if (i < 0 || (i == 0 && !biasUp)) {
+         /* Always emit at least one digit.  If the number appears to be zero
+            using the current mode, then emit one '0' digit and set decpt to 1. */
+         /*no_digits:
+             k = -1 - ndigits;
+             goto ret; */
+             goto no_digits;
+         }
+     one_digit:
+         *s++ = '1';
+         k++;
+         goto ret;
+     }
+     if (leftright) {
+         if (m2 > 0) {
+             mhi = lshift(mhi, m2);
+             if (!mhi)
+                 goto nomem;
+         }
+ 
+         /* Compute mlo -- check for special case
+          * that d is a normalized power of 2.
+          */
+ 
+         mlo = mhi;
+         if (spec_case) {
+             mhi = Balloc(mhi->k);
+             if (!mhi)
+                 goto nomem;
+             Bcopy(mhi, mlo);
+             mhi = lshift(mhi, Log2P);
+             if (!mhi)
+                 goto nomem;
+         }
+         /* mlo/S = maximum acceptable error, divided by 10^k, if the output is less than d. */
+         /* mhi/S = maximum acceptable error, divided by 10^k, if the output is greater than d. */
+ 
+         for(i = 1;;i++) {
+             dig = quorem(b,S) + '0';
+             /* Do we yet have the shortest decimal string
+              * that will round to d?
+              */
+             j = cmp(b, mlo);
+             /* j is b/S compared with mlo/S. */
+             delta = diff(S, mhi);
+             if (!delta)
+                 goto nomem;
+             j1 = delta->sign ? 1 : cmp(b, delta);
+             Bfree(delta);
+             /* j1 is b/S compared with 1 - mhi/S. */
+ #ifndef ROUND_BIASED
+             if (j1 == 0 && !mode && !(word1(d) & 1)) {
+                 if (dig == '9')
+                     goto round_9_up;
+                 if (j > 0)
+                     dig++;
+                 *s++ = (char)dig;
+                 goto ret;
+             }
+ #endif
+             if ((j < 0) || (j == 0 && !mode
+ #ifndef ROUND_BIASED
+                 && !(word1(d) & 1)
+ #endif
+                 )) {
+                 if (j1 > 0) {
+                     /* Either dig or dig+1 would work here as the least significant decimal digit.
+                        Use whichever would produce a decimal value closer to d. */
+                     b = lshift(b, 1);
+                     if (!b)
+                         goto nomem;
+                     j1 = cmp(b, S);
+                     if (((j1 > 0) || (j1 == 0 && (dig & 1 || biasUp)))
+                         && (dig++ == '9'))
+                         goto round_9_up;
+                 }
+                 *s++ = (char)dig;
+                 goto ret;
+             }
+             if (j1 > 0) {
+                 if (dig == '9') { /* possible if i == 1 */
+                 round_9_up:
+                     *s++ = '9';
+                     goto roundoff;
+                 }
+                 *s++ = (char)dig + 1;
+                 goto ret;
+             }
+             *s++ = (char)dig;
+             if (i == ilim)
+                 break;
+             b = multadd(b, 10, 0);
+             if (!b)
+                 goto nomem;
+             if (mlo == mhi) {
+                 mlo = mhi = multadd(mhi, 10, 0);
+                 if (!mhi)
+                     goto nomem;
+             }
+             else {
+                 mlo = multadd(mlo, 10, 0);
+                 if (!mlo)
+                     goto nomem;
+                 mhi = multadd(mhi, 10, 0);
+                 if (!mhi)
+                     goto nomem;
+             }
+         }
+     }
+     else
+         for(i = 1;; i++) {
+             *s++ = (char)(dig = quorem(b,S) + '0');
+             if (i >= ilim)
+                 break;
+             b = multadd(b, 10, 0);
+             if (!b)
+                 goto nomem;
+         }
+ 
+     /* Round off last digit */
+ 
+     b = lshift(b, 1);
+     if (!b)
+         goto nomem;
+     j = cmp(b, S);
+     if ((j > 0) || (j == 0 && (dig & 1 || biasUp))) {
+     roundoff:
+         while(*--s == '9')
+             if (s == buf) {
+                 k++;
+                 *s++ = '1';
+                 goto ret;
+             }
+         ++*s++;
+     }
+     else {
+         /* Strip trailing zeros */
+         while(*--s == '0') ;
+         s++;
+     }
+   ret:
+     Bfree(S);
+     if (mhi) {
+         if (mlo && mlo != mhi)
+             Bfree(mlo);
+         Bfree(mhi);
+     }
+   ret1:
+     Bfree(b);
+     JS_ASSERT(s < buf + bufsize);
+     *s = '\0';
+     if (rve)
+         *rve = s;
+     *decpt = k + 1;
+     return JS_TRUE;
+ 
+ nomem:
+     Bfree(S);
+     if (mhi) {
+         if (mlo && mlo != mhi)
+             Bfree(mlo);
+         Bfree(mhi);
+     }
+     Bfree(b);
+     return JS_FALSE;
+ }
+ 
+ 
+ /* Mapping of JSDToStrMode -> js_dtoa mode */
+ static const int dtoaModes[] = {
+     0,   /* DTOSTR_STANDARD */
+     0,   /* DTOSTR_STANDARD_EXPONENTIAL, */
+     3,   /* DTOSTR_FIXED, */
+     2,   /* DTOSTR_EXPONENTIAL, */
+     2};  /* DTOSTR_PRECISION */
+ 
+ JS_FRIEND_API(char *)
+ JS_dtostr(char *buffer, size_t bufferSize, JSDToStrMode mode, int precision, double d)
+ {
+     int decPt;                  /* Position of decimal point relative to first digit returned by js_dtoa */
+     int sign;                   /* Nonzero if the sign bit was set in d */
+     int nDigits;                /* Number of significand digits returned by js_dtoa */
+     char *numBegin = buffer+2;  /* Pointer to the digits returned by js_dtoa; the +2 leaves space for */
+                                 /* the sign and/or decimal point */
+     char *numEnd;               /* Pointer past the digits returned by js_dtoa */
+     JSBool dtoaRet;
+ 
+     JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL ? DTOSTR_STANDARD_BUFFER_SIZE :
+             DTOSTR_VARIABLE_BUFFER_SIZE(precision)));
+ 
+     if (mode == DTOSTR_FIXED && (d >= 1e21 || d <= -1e21))
+         mode = DTOSTR_STANDARD; /* Change mode here rather than below because the buffer may not be large enough to hold a large integer. */
+ 
+     /* Locking for Balloc's shared buffers */
+     ACQUIRE_DTOA_LOCK();
+     dtoaRet = js_dtoa(d, dtoaModes[mode], mode >= DTOSTR_FIXED, precision, &decPt, &sign, &numEnd, numBegin, bufferSize-2);
+     RELEASE_DTOA_LOCK();
+     if (!dtoaRet)
+         return 0;
+ 
+     nDigits = numEnd - numBegin;
+ 
+     /* If Infinity, -Infinity, or NaN, return the string regardless of the mode. */
+     if (decPt != 9999) {
+         JSBool exponentialNotation = JS_FALSE;
+         int minNDigits = 0;         /* Minimum number of significand digits required by mode and precision */
+         char *p;
+         char *q;
+ 
+         switch (mode) {
+             case DTOSTR_STANDARD:
+                 if (decPt < -5 || decPt > 21)
+                     exponentialNotation = JS_TRUE;
+                 else
+                     minNDigits = decPt;
+                 break;
+ 
+             case DTOSTR_FIXED:
+                 if (precision >= 0)
+                     minNDigits = decPt + precision;
+                 else
+                     minNDigits = decPt;
+                 break;
+ 
+             case DTOSTR_EXPONENTIAL:
+                 JS_ASSERT(precision > 0);
+                 minNDigits = precision;
+                 /* Fall through */
+             case DTOSTR_STANDARD_EXPONENTIAL:
+                 exponentialNotation = JS_TRUE;
+                 break;
+ 
+             case DTOSTR_PRECISION:
+                 JS_ASSERT(precision > 0);
+                 minNDigits = precision;
+                 if (decPt < -5 || decPt > precision)
+                     exponentialNotation = JS_TRUE;
+                 break;
+         }
+ 
+         /* If the number has fewer than minNDigits, pad it with zeros at the end */
+         if (nDigits < minNDigits) {
+             p = numBegin + minNDigits;
+             nDigits = minNDigits;
+             do {
+                 *numEnd++ = '0';
+             } while (numEnd != p);
+             *numEnd = '\0';
+         }
+ 
+         if (exponentialNotation) {
+             /* Insert a decimal point if more than one significand digit */
+             if (nDigits != 1) {
+                 numBegin--;
+                 numBegin[0] = numBegin[1];
+                 numBegin[1] = '.';
+             }
+             JS_snprintf(numEnd, bufferSize - (numEnd - buffer), "e%+d", decPt-1);
+         } else if (decPt != nDigits) {
+             /* Some kind of a fraction in fixed notation */
+             JS_ASSERT(decPt <= nDigits);
+             if (decPt > 0) {
+                 /* dd...dd . dd...dd */
+                 p = --numBegin;
+                 do {
+                     *p = p[1];
+                     p++;
+                 } while (--decPt);
+                 *p = '.';
+             } else {
+                 /* 0 . 00...00dd...dd */
+                 p = numEnd;
+                 numEnd += 1 - decPt;
+                 q = numEnd;
+                 JS_ASSERT(numEnd < buffer + bufferSize);
+                 *numEnd = '\0';
+                 while (p != numBegin)
+                     *--q = *--p;
+                 for (p = numBegin + 1; p != q; p++)
+                     *p = '0';
+                 *numBegin = '.';
+                 *--numBegin = '0';
+             }
+         }
+     }
+ 
+     /* If negative and neither -0.0 nor NaN, output a leading '-'. */
+     if (sign &&
+             !(word0(d) == Sign_bit && word1(d) == 0) &&
+             !((word0(d) & Exp_mask) == Exp_mask &&
+               (word1(d) || (word0(d) & Frac_mask)))) {
+         *--numBegin = '-';
+     }
+     return numBegin;
+ }
+ 
+ 
+ /* Let b = floor(b / divisor), and return the remainder.  b must be nonnegative.
+  * divisor must be between 1 and 65536.
+  * This function cannot run out of memory. */
+ static uint32
+ divrem(Bigint *b, uint32 divisor)
+ {
+     int32 n = b->wds;
+     uint32 remainder = 0;
+     ULong *bx;
+     ULong *bp;
+ 
+     JS_ASSERT(divisor > 0 && divisor <= 65536);
+ 
+     if (!n)
+         return 0; /* b is zero */
+     bx = b->x;
+     bp = bx + n;
+     do {
+         ULong a = *--bp;
+         ULong dividend = remainder << 16 | a >> 16;
+         ULong quotientHi = dividend / divisor;
+         ULong quotientLo;
+ 
+         remainder = dividend - quotientHi*divisor;
+         JS_ASSERT(quotientHi <= 0xFFFF && remainder < divisor);
+         dividend = remainder << 16 | (a & 0xFFFF);
+         quotientLo = dividend / divisor;
+         remainder = dividend - quotientLo*divisor;
+         JS_ASSERT(quotientLo <= 0xFFFF && remainder < divisor);
+         *bp = quotientHi << 16 | quotientLo;
+     } while (bp != bx);
+     /* Decrease the size of the number if its most significant word is now zero. */
+     if (bx[n-1] == 0)
+         b->wds--;
+     return remainder;
+ }
+ 
+ 
+ /* "-0.0000...(1073 zeros after decimal point)...0001\0" is the longest string that we could produce,
+  * which occurs when printing -5e-324 in binary.  We could compute a better estimate of the size of
+  * the output string and malloc fewer bytes depending on d and base, but why bother? */
+ #define DTOBASESTR_BUFFER_SIZE 1078
+ #define BASEDIGIT(digit) ((char)(((digit) >= 10) ? 'a' - 10 + (digit) : '0' + (digit)))
+ 
+ JS_FRIEND_API(char *)
+ JS_dtobasestr(int base, double d)
+ {
+     char *buffer;        /* The output string */
+     char *p;             /* Pointer to current position in the buffer */
+     char *pInt;          /* Pointer to the beginning of the integer part of the string */
+     char *q;
+     uint32 digit;
+     double di;           /* d truncated to an integer */
+     double df;           /* The fractional part of d */
+ 
+     JS_ASSERT(base >= 2 && base <= 36);
+ 
+     buffer = (char*) malloc(DTOBASESTR_BUFFER_SIZE);
+     if (buffer) {
+         p = buffer;
+         if (d < 0.0
+ #if defined(XP_WIN) || defined(XP_OS2)
+             && !((word0(d) & Exp_mask) == Exp_mask && ((word0(d) & Frac_mask) || word1(d))) /* Visual C++ doesn't know how to compare against NaN */
+ #endif
+            ) {
+             *p++ = '-';
+             d = -d;
+         }
+ 
+         /* Check for Infinity and NaN */
+         if ((word0(d) & Exp_mask) == Exp_mask) {
+             strcpy(p, !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN");
+             return buffer;
+         }
+ 
+         /* Locking for Balloc's shared buffers */
+         ACQUIRE_DTOA_LOCK();
+ 
+         /* Output the integer part of d with the digits in reverse order. */
+         pInt = p;
+         di = fd_floor(d);
+         if (di <= 4294967295.0) {
+             uint32 n = (uint32)di;
+             if (n)
+                 do {
+                     uint32 m = n / base;
+                     digit = n - m*base;
+                     n = m;
+                     JS_ASSERT(digit < (uint32)base);
+                     *p++ = BASEDIGIT(digit);
+                 } while (n);
+             else *p++ = '0';
+         } else {
+             int32 e;
+             int32 bits;  /* Number of significant bits in di; not used. */
+             Bigint *b = d2b(di, &e, &bits);
+             if (!b)
+                 goto nomem1;
+             b = lshift(b, e);
+             if (!b) {
+               nomem1:
+                 Bfree(b);
+                 return NULL;
+             }
+             do {
+                 digit = divrem(b, base);
+                 JS_ASSERT(digit < (uint32)base);
+                 *p++ = BASEDIGIT(digit);
+             } while (b->wds);
+             Bfree(b);
+         }
+         /* Reverse the digits of the integer part of d. */
+         q = p-1;
+         while (q > pInt) {
+             char ch = *pInt;
+             *pInt++ = *q;
+             *q-- = ch;
+         }
+ 
+         df = d - di;
+         if (df != 0.0) {
+             /* We have a fraction. */
+             int32 e, bbits, s2, done;
+             Bigint *b, *s, *mlo, *mhi;
+ 
+             b = s = mlo = mhi = NULL;
+ 
+             *p++ = '.';
+             b = d2b(df, &e, &bbits);
+             if (!b) {
+               nomem2:
+                 Bfree(b);
+                 Bfree(s);
+                 if (mlo != mhi)
+                     Bfree(mlo);
+                 Bfree(mhi);
+                 return NULL;
+             }
+             JS_ASSERT(e < 0);
+             /* At this point df = b * 2^e.  e must be less than zero because 0 < df < 1. */
+ 
+             s2 = -(int32)(word0(d) >> Exp_shift1 & Exp_mask>>Exp_shift1);
+ #ifndef Sudden_Underflow
+             if (!s2)
+                 s2 = -1;
+ #endif
+             s2 += Bias + P;
+             /* 1/2^s2 = (nextDouble(d) - d)/2 */
+             JS_ASSERT(-s2 < e);
+             mlo = i2b(1);
+             if (!mlo)
+                 goto nomem2;
+             mhi = mlo;
+             if (!word1(d) && !(word0(d) & Bndry_mask)
+ #ifndef Sudden_Underflow
+                 && word0(d) & (Exp_mask & Exp_mask << 1)
+ #endif
+                 ) {
+                 /* The special case.  Here we want to be within a quarter of the last input
+                    significant digit instead of one half of it when the output string's value is less than d.  */
+                 s2 += Log2P;
+                 mhi = i2b(1<<Log2P);
+                 if (!mhi)
+                     goto nomem2;
+             }
+             b = lshift(b, e + s2);
+             if (!b)
+                 goto nomem2;
+             s = i2b(1);
+             if (!s)
+                 goto nomem2;
+             s = lshift(s, s2);
+             if (!s)
+                 goto nomem2;
+             /* At this point we have the following:
+              *   s = 2^s2;
+              *   1 > df = b/2^s2 > 0;
+              *   (d - prevDouble(d))/2 = mlo/2^s2;
+              *   (nextDouble(d) - d)/2 = mhi/2^s2. */
+ 
+             done = JS_FALSE;
+             do {
+                 int32 j, j1;
+                 Bigint *delta;
+ 
+                 b = multadd(b, base, 0);
+                 if (!b)
+                     goto nomem2;
+                 digit = quorem2(b, s2);
+                 if (mlo == mhi) {
+                     mlo = mhi = multadd(mlo, base, 0);
+                     if (!mhi)
+                         goto nomem2;
+                 }
+                 else {
+                     mlo = multadd(mlo, base, 0);
+                     if (!mlo)
+                         goto nomem2;
+                     mhi = multadd(mhi, base, 0);
+                     if (!mhi)
+                         goto nomem2;
+                 }
+ 
+                 /* Do we yet have the shortest string that will round to d? */
+                 j = cmp(b, mlo);
+                 /* j is b/2^s2 compared with mlo/2^s2. */
+                 delta = diff(s, mhi);
+                 if (!delta)
+                     goto nomem2;
+                 j1 = delta->sign ? 1 : cmp(b, delta);
+                 Bfree(delta);
+                 /* j1 is b/2^s2 compared with 1 - mhi/2^s2. */
+ 
+ #ifndef ROUND_BIASED
+                 if (j1 == 0 && !(word1(d) & 1)) {
+                     if (j > 0)
+                         digit++;
+                     done = JS_TRUE;
+                 } else
+ #endif
+                 if (j < 0 || (j == 0
+ #ifndef ROUND_BIASED
+                     && !(word1(d) & 1)
+ #endif
+                     )) {
+                     if (j1 > 0) {
+                         /* Either dig or dig+1 would work here as the least significant digit.
+                            Use whichever would produce an output value closer to d. */
+                         b = lshift(b, 1);
+                         if (!b)
+                             goto nomem2;
+                         j1 = cmp(b, s);
+                         if (j1 > 0) /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output
+                                      * such as 3.5 in base 3.  */
+                             digit++;
+                     }
+                     done = JS_TRUE;
+                 } else if (j1 > 0) {
+                     digit++;
+                     done = JS_TRUE;
+                 }
+                 JS_ASSERT(digit < (uint32)base);
+                 *p++ = BASEDIGIT(digit);
+             } while (!done);
+             Bfree(b);
+             Bfree(s);
+             if (mlo != mhi)
+                 Bfree(mlo);
+             Bfree(mhi);
+         }
+         JS_ASSERT(p < buffer + DTOBASESTR_BUFFER_SIZE);
+         *p = '\0';
+         RELEASE_DTOA_LOCK();
+     }
+     return buffer;
+ }


ossp-pkg/js/src/jsdtoa.c 1.1 -> 1.1.1.1


CVSTrac 2.0.1