Index: ossp-pkg/js/src/jsdtoa.c RCS File: /v/ossp/cvs/ossp-pkg/js/src/jsdtoa.c,v co -q -kk -p'1.1' '/v/ossp/cvs/ossp-pkg/js/src/jsdtoa.c,v' | diff -u /dev/null - -L'ossp-pkg/js/src/jsdtoa.c' 2>/dev/null --- ossp-pkg/js/src/jsdtoa.c +++ - 2025-09-07 04:18:34.831745233 +0200 @@ -0,0 +1,3125 @@ +/* -*- Mode: C; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 4 -*- + * + * ***** BEGIN LICENSE BLOCK ***** + * Version: MPL 1.1/GPL 2.0/LGPL 2.1 + * + * The contents of this file are subject to the Mozilla Public License Version + * 1.1 (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * http://www.mozilla.org/MPL/ + * + * Software distributed under the License is distributed on an "AS IS" basis, + * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License + * for the specific language governing rights and limitations under the + * License. + * + * The Original Code is Mozilla Communicator client code, released + * March 31, 1998. + * + * The Initial Developer of the Original Code is + * Netscape Communications Corporation. + * Portions created by the Initial Developer are Copyright (C) 1998 + * the Initial Developer. All Rights Reserved. + * + * Contributor(s): + * + * Alternatively, the contents of this file may be used under the terms of + * either of the GNU General Public License Version 2 or later (the "GPL"), + * or the GNU Lesser General Public License Version 2.1 or later (the "LGPL"), + * in which case the provisions of the GPL or the LGPL are applicable instead + * of those above. If you wish to allow use of your version of this file only + * under the terms of either the GPL or the LGPL, and not to allow others to + * use your version of this file under the terms of the MPL, indicate your + * decision by deleting the provisions above and replace them with the notice + * and other provisions required by the GPL or the LGPL. If you do not delete + * the provisions above, a recipient may use your version of this file under + * the terms of any one of the MPL, the GPL or the LGPL. + * + * ***** END LICENSE BLOCK ***** */ + +/* + * Portable double to alphanumeric string and back converters. + */ +#include "jsstddef.h" +#include "jslibmath.h" +#include "jstypes.h" +#include "jsdtoa.h" +#include "jsprf.h" +#include "jsutil.h" /* Added by JSIFY */ +#include "jspubtd.h" +#include "jsnum.h" + +#ifdef JS_THREADSAFE +#include "prlock.h" +#endif + +/**************************************************************** + * + * The author of this software is David M. Gay. + * + * Copyright (c) 1991 by Lucent Technologies. + * + * Permission to use, copy, modify, and distribute this software for any + * purpose without fee is hereby granted, provided that this entire notice + * is included in all copies of any software which is or includes a copy + * or modification of this software and in all copies of the supporting + * documentation for such software. + * + * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED + * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY + * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY + * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. + * + ***************************************************************/ + +/* Please send bug reports to + David M. Gay + Bell Laboratories, Room 2C-463 + 600 Mountain Avenue + Murray Hill, NJ 07974-0636 + U.S.A. + dmg@bell-labs.com + */ + +/* On a machine with IEEE extended-precision registers, it is + * necessary to specify double-precision (53-bit) rounding precision + * before invoking strtod or dtoa. If the machine uses (the equivalent + * of) Intel 80x87 arithmetic, the call + * _control87(PC_53, MCW_PC); + * does this with many compilers. Whether this or another call is + * appropriate depends on the compiler; for this to work, it may be + * necessary to #include "float.h" or another system-dependent header + * file. + */ + +/* strtod for IEEE-arithmetic machines. + * + * This strtod returns a nearest machine number to the input decimal + * string (or sets err to JS_DTOA_ERANGE or JS_DTOA_ENOMEM). With IEEE + * arithmetic, ties are broken by the IEEE round-even rule. Otherwise + * ties are broken by biased rounding (add half and chop). + * + * Inspired loosely by William D. Clinger's paper "How to Read Floating + * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. + * + * Modifications: + * + * 1. We only require IEEE double-precision + * arithmetic (not IEEE double-extended). + * 2. We get by with floating-point arithmetic in a case that + * Clinger missed -- when we're computing d * 10^n + * for a small integer d and the integer n is not too + * much larger than 22 (the maximum integer k for which + * we can represent 10^k exactly), we may be able to + * compute (d*10^k) * 10^(e-k) with just one roundoff. + * 3. Rather than a bit-at-a-time adjustment of the binary + * result in the hard case, we use floating-point + * arithmetic to determine the adjustment to within + * one bit; only in really hard cases do we need to + * compute a second residual. + * 4. Because of 3., we don't need a large table of powers of 10 + * for ten-to-e (just some small tables, e.g. of 10^k + * for 0 <= k <= 22). + */ + +/* + * #define IEEE_8087 for IEEE-arithmetic machines where the least + * significant byte has the lowest address. + * #define IEEE_MC68k for IEEE-arithmetic machines where the most + * significant byte has the lowest address. + * #define Long int on machines with 32-bit ints and 64-bit longs. + * #define Sudden_Underflow for IEEE-format machines without gradual + * underflow (i.e., that flush to zero on underflow). + * #define No_leftright to omit left-right logic in fast floating-point + * computation of js_dtoa. + * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3. + * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines + * that use extended-precision instructions to compute rounded + * products and quotients) with IBM. + * #define ROUND_BIASED for IEEE-format with biased rounding. + * #define Inaccurate_Divide for IEEE-format with correctly rounded + * products but inaccurate quotients, e.g., for Intel i860. + * #define JS_HAVE_LONG_LONG on machines that have a "long long" + * integer type (of >= 64 bits). If long long is available and the name is + * something other than "long long", #define Llong to be the name, + * and if "unsigned Llong" does not work as an unsigned version of + * Llong, #define #ULLong to be the corresponding unsigned type. + * #define Bad_float_h if your system lacks a float.h or if it does not + * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, + * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. + * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) + * if memory is available and otherwise does something you deem + * appropriate. If MALLOC is undefined, malloc will be invoked + * directly -- and assumed always to succeed. + * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making + * memory allocations from a private pool of memory when possible. + * When used, the private pool is PRIVATE_MEM bytes long: 2000 bytes, + * unless #defined to be a different length. This default length + * suffices to get rid of MALLOC calls except for unusual cases, + * such as decimal-to-binary conversion of a very long string of + * digits. + * #define INFNAN_CHECK on IEEE systems to cause strtod to check for + * Infinity and NaN (case insensitively). On some systems (e.g., + * some HP systems), it may be necessary to #define NAN_WORD0 + * appropriately -- to the most significant word of a quiet NaN. + * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) + * #define MULTIPLE_THREADS if the system offers preemptively scheduled + * multiple threads. In this case, you must provide (or suitably + * #define) two locks, acquired by ACQUIRE_DTOA_LOCK() and released + * by RELEASE_DTOA_LOCK(). (The second lock, accessed + * in pow5mult, ensures lazy evaluation of only one copy of high + * powers of 5; omitting this lock would introduce a small + * probability of wasting memory, but would otherwise be harmless.) + * You must also invoke freedtoa(s) to free the value s returned by + * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. + * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that + * avoids underflows on inputs whose result does not underflow. + */ +#ifdef IS_LITTLE_ENDIAN +#define IEEE_8087 +#else +#define IEEE_MC68k +#endif + +#ifndef Long +#define Long int32 +#endif + +#ifndef ULong +#define ULong uint32 +#endif + +#define Bug(errorMessageString) JS_ASSERT(!errorMessageString) + +#include "stdlib.h" +#include "string.h" + +#ifdef MALLOC +extern void *MALLOC(size_t); +#else +#define MALLOC malloc +#endif + +#define Omit_Private_Memory +/* Private memory currently doesn't work with JS_THREADSAFE */ +#ifndef Omit_Private_Memory +#ifndef PRIVATE_MEM +#define PRIVATE_MEM 2000 +#endif +#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) +static double private_mem[PRIVATE_mem], *pmem_next = private_mem; +#endif + +#ifdef Bad_float_h +#undef __STDC__ + +#define DBL_DIG 15 +#define DBL_MAX_10_EXP 308 +#define DBL_MAX_EXP 1024 +#define FLT_RADIX 2 +#define FLT_ROUNDS 1 +#define DBL_MAX 1.7976931348623157e+308 + + + +#ifndef LONG_MAX +#define LONG_MAX 2147483647 +#endif + +#else /* ifndef Bad_float_h */ +#include "float.h" +#endif /* Bad_float_h */ + +#ifndef __MATH_H__ +#include "math.h" +#endif + +#ifndef CONST +#define CONST const +#endif + +#if defined(IEEE_8087) + defined(IEEE_MC68k) != 1 +Exactly one of IEEE_8087 or IEEE_MC68k should be defined. +#endif + +#define word0(x) JSDOUBLE_HI32(x) +#define set_word0(x, y) JSDOUBLE_SET_HI32(x, y) +#define word1(x) JSDOUBLE_LO32(x) +#define set_word1(x, y) JSDOUBLE_SET_LO32(x, y) + +#define Storeinc(a,b,c) (*(a)++ = (b) << 16 | (c) & 0xffff) + +/* #define P DBL_MANT_DIG */ +/* Ten_pmax = floor(P*log(2)/log(5)) */ +/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ +/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ +/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ + +#define Exp_shift 20 +#define Exp_shift1 20 +#define Exp_msk1 0x100000 +#define Exp_msk11 0x100000 +#define Exp_mask 0x7ff00000 +#define P 53 +#define Bias 1023 +#define Emin (-1022) +#define Exp_1 0x3ff00000 +#define Exp_11 0x3ff00000 +#define Ebits 11 +#define Frac_mask 0xfffff +#define Frac_mask1 0xfffff +#define Ten_pmax 22 +#define Bletch 0x10 +#define Bndry_mask 0xfffff +#define Bndry_mask1 0xfffff +#define LSB 1 +#define Sign_bit 0x80000000 +#define Log2P 1 +#define Tiny0 0 +#define Tiny1 1 +#define Quick_max 14 +#define Int_max 14 +#define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */ +#ifndef NO_IEEE_Scale +#define Avoid_Underflow +#endif + + + +#ifdef RND_PRODQUOT +#define rounded_product(a,b) a = rnd_prod(a, b) +#define rounded_quotient(a,b) a = rnd_quot(a, b) +extern double rnd_prod(double, double), rnd_quot(double, double); +#else +#define rounded_product(a,b) a *= b +#define rounded_quotient(a,b) a /= b +#endif + +#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) +#define Big1 0xffffffff + +#ifndef JS_HAVE_LONG_LONG +#undef ULLong +#else /* long long available */ +#ifndef Llong +#define Llong JSInt64 +#endif +#ifndef ULLong +#define ULLong JSUint64 +#endif +#endif /* JS_HAVE_LONG_LONG */ + +#ifdef JS_THREADSAFE +#define MULTIPLE_THREADS +static PRLock *freelist_lock; +#define ACQUIRE_DTOA_LOCK() \ + JS_BEGIN_MACRO \ + if (!initialized) \ + InitDtoa(); \ + PR_Lock(freelist_lock); \ + JS_END_MACRO +#define RELEASE_DTOA_LOCK() PR_Unlock(freelist_lock) +#else +#undef MULTIPLE_THREADS +#define ACQUIRE_DTOA_LOCK() /*nothing*/ +#define RELEASE_DTOA_LOCK() /*nothing*/ +#endif + +#define Kmax 15 + +struct Bigint { + struct Bigint *next; /* Free list link */ + int32 k; /* lg2(maxwds) */ + int32 maxwds; /* Number of words allocated for x */ + int32 sign; /* Zero if positive, 1 if negative. Ignored by most Bigint routines! */ + int32 wds; /* Actual number of words. If value is nonzero, the most significant word must be nonzero. */ + ULong x[1]; /* wds words of number in little endian order */ +}; + +#ifdef ENABLE_OOM_TESTING +/* Out-of-memory testing. Use a good testcase (over and over) and then use + * these routines to cause a memory failure on every possible Balloc allocation, + * to make sure that all out-of-memory paths can be followed. See bug 14044. + */ + +static int allocationNum; /* which allocation is next? */ +static int desiredFailure; /* which allocation should fail? */ + +/** + * js_BigintTestingReset + * + * Call at the beginning of a test run to set the allocation failure position. + * (Set to 0 to just have the engine count allocations without failing.) + */ +JS_PUBLIC_API(void) +js_BigintTestingReset(int newFailure) +{ + allocationNum = 0; + desiredFailure = newFailure; +} + +/** + * js_BigintTestingWhere + * + * Report the current allocation position. This is really only useful when you + * want to learn how many allocations a test run has. + */ +JS_PUBLIC_API(int) +js_BigintTestingWhere() +{ + return allocationNum; +} + + +/* + * So here's what you do: Set up a fantastic test case that exercises the + * elements of the code you wish. Set the failure point at 0 and run the test, + * then get the allocation position. This number is the number of allocations + * your test makes. Now loop from 1 to that number, setting the failure point + * at each loop count, and run the test over and over, causing failures at each + * step. Any memory failure *should* cause a Out-Of-Memory exception; if it + * doesn't, then there's still an error here. + */ +#endif + +typedef struct Bigint Bigint; + +static Bigint *freelist[Kmax+1]; + +/* + * Allocate a Bigint with 2^k words. + * This is not threadsafe. The caller must use thread locks + */ +static Bigint *Balloc(int32 k) +{ + int32 x; + Bigint *rv; +#ifndef Omit_Private_Memory + uint32 len; +#endif + +#ifdef ENABLE_OOM_TESTING + if (++allocationNum == desiredFailure) { + printf("Forced Failing Allocation number %d\n", allocationNum); + return NULL; + } +#endif + + if ((rv = freelist[k]) != NULL) + freelist[k] = rv->next; + if (rv == NULL) { + x = 1 << k; +#ifdef Omit_Private_Memory + rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong)); +#else + len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) + /sizeof(double); + if (pmem_next - private_mem + len <= PRIVATE_mem) { + rv = (Bigint*)pmem_next; + pmem_next += len; + } + else + rv = (Bigint*)MALLOC(len*sizeof(double)); +#endif + if (!rv) + return NULL; + rv->k = k; + rv->maxwds = x; + } + rv->sign = rv->wds = 0; + return rv; +} + +static void Bfree(Bigint *v) +{ + if (v) { + v->next = freelist[v->k]; + freelist[v->k] = v; + } +} + +#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ + y->wds*sizeof(Long) + 2*sizeof(int32)) + +/* Return b*m + a. Deallocate the old b. Both a and m must be between 0 and + * 65535 inclusive. NOTE: old b is deallocated on memory failure. + */ +static Bigint *multadd(Bigint *b, int32 m, int32 a) +{ + int32 i, wds; +#ifdef ULLong + ULong *x; + ULLong carry, y; +#else + ULong carry, *x, y; + ULong xi, z; +#endif + Bigint *b1; + +#ifdef ENABLE_OOM_TESTING + if (++allocationNum == desiredFailure) { + /* Faux allocation, because I'm not getting all of the failure paths + * without it. + */ + printf("Forced Failing Allocation number %d\n", allocationNum); + Bfree(b); + return NULL; + } +#endif + + wds = b->wds; + x = b->x; + i = 0; + carry = a; + do { +#ifdef ULLong + y = *x * (ULLong)m + carry; + carry = y >> 32; + *x++ = (ULong)(y & 0xffffffffUL); +#else + xi = *x; + y = (xi & 0xffff) * m + carry; + z = (xi >> 16) * m + (y >> 16); + carry = z >> 16; + *x++ = (z << 16) + (y & 0xffff); +#endif + } + while(++i < wds); + if (carry) { + if (wds >= b->maxwds) { + b1 = Balloc(b->k+1); + if (!b1) { + Bfree(b); + return NULL; + } + Bcopy(b1, b); + Bfree(b); + b = b1; + } + b->x[wds++] = (ULong)carry; + b->wds = wds; + } + return b; +} + +static Bigint *s2b(CONST char *s, int32 nd0, int32 nd, ULong y9) +{ + Bigint *b; + int32 i, k; + Long x, y; + + x = (nd + 8) / 9; + for(k = 0, y = 1; x > y; y <<= 1, k++) ; + b = Balloc(k); + if (!b) + return NULL; + b->x[0] = y9; + b->wds = 1; + + i = 9; + if (9 < nd0) { + s += 9; + do { + b = multadd(b, 10, *s++ - '0'); + if (!b) + return NULL; + } while(++i < nd0); + s++; + } + else + s += 10; + for(; i < nd; i++) { + b = multadd(b, 10, *s++ - '0'); + if (!b) + return NULL; + } + return b; +} + + +/* Return the number (0 through 32) of most significant zero bits in x. */ +static int32 hi0bits(register ULong x) +{ + register int32 k = 0; + + if (!(x & 0xffff0000)) { + k = 16; + x <<= 16; + } + if (!(x & 0xff000000)) { + k += 8; + x <<= 8; + } + if (!(x & 0xf0000000)) { + k += 4; + x <<= 4; + } + if (!(x & 0xc0000000)) { + k += 2; + x <<= 2; + } + if (!(x & 0x80000000)) { + k++; + if (!(x & 0x40000000)) + return 32; + } + return k; +} + + +/* Return the number (0 through 32) of least significant zero bits in y. + * Also shift y to the right past these 0 through 32 zeros so that y's + * least significant bit will be set unless y was originally zero. */ +static int32 lo0bits(ULong *y) +{ + register int32 k; + register ULong x = *y; + + if (x & 7) { + if (x & 1) + return 0; + if (x & 2) { + *y = x >> 1; + return 1; + } + *y = x >> 2; + return 2; + } + k = 0; + if (!(x & 0xffff)) { + k = 16; + x >>= 16; + } + if (!(x & 0xff)) { + k += 8; + x >>= 8; + } + if (!(x & 0xf)) { + k += 4; + x >>= 4; + } + if (!(x & 0x3)) { + k += 2; + x >>= 2; + } + if (!(x & 1)) { + k++; + x >>= 1; + if (!x & 1) + return 32; + } + *y = x; + return k; +} + +/* Return a new Bigint with the given integer value, which must be nonnegative. */ +static Bigint *i2b(int32 i) +{ + Bigint *b; + + b = Balloc(1); + if (!b) + return NULL; + b->x[0] = i; + b->wds = 1; + return b; +} + +/* Return a newly allocated product of a and b. */ +static Bigint *mult(CONST Bigint *a, CONST Bigint *b) +{ + CONST Bigint *t; + Bigint *c; + int32 k, wa, wb, wc; + ULong y; + ULong *xc, *xc0, *xce; + CONST ULong *x, *xa, *xae, *xb, *xbe; +#ifdef ULLong + ULLong carry, z; +#else + ULong carry, z; + ULong z2; +#endif + + if (a->wds < b->wds) { + t = a; + a = b; + b = t; + } + k = a->k; + wa = a->wds; + wb = b->wds; + wc = wa + wb; + if (wc > a->maxwds) + k++; + c = Balloc(k); + if (!c) + return NULL; + for(xc = c->x, xce = xc + wc; xc < xce; xc++) + *xc = 0; + xa = a->x; + xae = xa + wa; + xb = b->x; + xbe = xb + wb; + xc0 = c->x; +#ifdef ULLong + for(; xb < xbe; xc0++) { + if ((y = *xb++) != 0) { + x = xa; + xc = xc0; + carry = 0; + do { + z = *x++ * (ULLong)y + *xc + carry; + carry = z >> 32; + *xc++ = (ULong)(z & 0xffffffffUL); + } + while(x < xae); + *xc = (ULong)carry; + } + } +#else + for(; xb < xbe; xb++, xc0++) { + if ((y = *xb & 0xffff) != 0) { + x = xa; + xc = xc0; + carry = 0; + do { + z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; + carry = z >> 16; + z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; + carry = z2 >> 16; + Storeinc(xc, z2, z); + } + while(x < xae); + *xc = carry; + } + if ((y = *xb >> 16) != 0) { + x = xa; + xc = xc0; + carry = 0; + z2 = *xc; + do { + z = (*x & 0xffff) * y + (*xc >> 16) + carry; + carry = z >> 16; + Storeinc(xc, z, z2); + z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; + carry = z2 >> 16; + } + while(x < xae); + *xc = z2; + } + } +#endif + for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; + c->wds = wc; + return c; +} + +/* + * 'p5s' points to a linked list of Bigints that are powers of 5. + * This list grows on demand, and it can only grow: it won't change + * in any other way. So if we read 'p5s' or the 'next' field of + * some Bigint on the list, and it is not NULL, we know it won't + * change to NULL or some other value. Only when the value of + * 'p5s' or 'next' is NULL do we need to acquire the lock and add + * a new Bigint to the list. + */ + +static Bigint *p5s; + +#ifdef JS_THREADSAFE +static PRLock *p5s_lock; +#endif + +/* Return b * 5^k. Deallocate the old b. k must be nonnegative. */ +/* NOTE: old b is deallocated on memory failure. */ +static Bigint *pow5mult(Bigint *b, int32 k) +{ + Bigint *b1, *p5, *p51; + int32 i; + static CONST int32 p05[3] = { 5, 25, 125 }; + + if ((i = k & 3) != 0) { + b = multadd(b, p05[i-1], 0); + if (!b) + return NULL; + } + + if (!(k >>= 2)) + return b; + if (!(p5 = p5s)) { +#ifdef JS_THREADSAFE + /* + * We take great care to not call i2b() and Bfree() + * while holding the lock. + */ + Bigint *wasted_effort = NULL; + p5 = i2b(625); + if (!p5) { + Bfree(b); + return NULL; + } + /* lock and check again */ + PR_Lock(p5s_lock); + if (!p5s) { + /* first time */ + p5s = p5; + p5->next = 0; + } else { + /* some other thread just beat us */ + wasted_effort = p5; + p5 = p5s; + } + PR_Unlock(p5s_lock); + if (wasted_effort) { + Bfree(wasted_effort); + } +#else + /* first time */ + p5 = p5s = i2b(625); + if (!p5) { + Bfree(b); + return NULL; + } + p5->next = 0; +#endif + } + for(;;) { + if (k & 1) { + b1 = mult(b, p5); + Bfree(b); + if (!b1) + return NULL; + b = b1; + } + if (!(k >>= 1)) + break; + if (!(p51 = p5->next)) { +#ifdef JS_THREADSAFE + Bigint *wasted_effort = NULL; + p51 = mult(p5, p5); + if (!p51) { + Bfree(b); + return NULL; + } + PR_Lock(p5s_lock); + if (!p5->next) { + p5->next = p51; + p51->next = 0; + } else { + wasted_effort = p51; + p51 = p5->next; + } + PR_Unlock(p5s_lock); + if (wasted_effort) { + Bfree(wasted_effort); + } +#else + p51 = mult(p5,p5); + if (!p51) { + Bfree(b); + return NULL; + } + p51->next = 0; + p5->next = p51; +#endif + } + p5 = p51; + } + return b; +} + +/* Return b * 2^k. Deallocate the old b. k must be nonnegative. + * NOTE: on memory failure, old b is deallocated. */ +static Bigint *lshift(Bigint *b, int32 k) +{ + int32 i, k1, n, n1; + Bigint *b1; + ULong *x, *x1, *xe, z; + + n = k >> 5; + k1 = b->k; + n1 = n + b->wds + 1; + for(i = b->maxwds; n1 > i; i <<= 1) + k1++; + b1 = Balloc(k1); + if (!b1) + goto done; + x1 = b1->x; + for(i = 0; i < n; i++) + *x1++ = 0; + x = b->x; + xe = x + b->wds; + if (k &= 0x1f) { + k1 = 32 - k; + z = 0; + do { + *x1++ = *x << k | z; + z = *x++ >> k1; + } + while(x < xe); + if ((*x1 = z) != 0) + ++n1; + } + else do + *x1++ = *x++; + while(x < xe); + b1->wds = n1 - 1; +done: + Bfree(b); + return b1; +} + +/* Return -1, 0, or 1 depending on whether ab, respectively. */ +static int32 cmp(Bigint *a, Bigint *b) +{ + ULong *xa, *xa0, *xb, *xb0; + int32 i, j; + + i = a->wds; + j = b->wds; +#ifdef DEBUG + if (i > 1 && !a->x[i-1]) + Bug("cmp called with a->x[a->wds-1] == 0"); + if (j > 1 && !b->x[j-1]) + Bug("cmp called with b->x[b->wds-1] == 0"); +#endif + if (i -= j) + return i; + xa0 = a->x; + xa = xa0 + j; + xb0 = b->x; + xb = xb0 + j; + for(;;) { + if (*--xa != *--xb) + return *xa < *xb ? -1 : 1; + if (xa <= xa0) + break; + } + return 0; +} + +static Bigint *diff(Bigint *a, Bigint *b) +{ + Bigint *c; + int32 i, wa, wb; + ULong *xa, *xae, *xb, *xbe, *xc; +#ifdef ULLong + ULLong borrow, y; +#else + ULong borrow, y; + ULong z; +#endif + + i = cmp(a,b); + if (!i) { + c = Balloc(0); + if (!c) + return NULL; + c->wds = 1; + c->x[0] = 0; + return c; + } + if (i < 0) { + c = a; + a = b; + b = c; + i = 1; + } + else + i = 0; + c = Balloc(a->k); + if (!c) + return NULL; + c->sign = i; + wa = a->wds; + xa = a->x; + xae = xa + wa; + wb = b->wds; + xb = b->x; + xbe = xb + wb; + xc = c->x; + borrow = 0; +#ifdef ULLong + do { + y = (ULLong)*xa++ - *xb++ - borrow; + borrow = y >> 32 & 1UL; + *xc++ = (ULong)(y & 0xffffffffUL); + } + while(xb < xbe); + while(xa < xae) { + y = *xa++ - borrow; + borrow = y >> 32 & 1UL; + *xc++ = (ULong)(y & 0xffffffffUL); + } +#else + do { + y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(xc, z, y); + } + while(xb < xbe); + while(xa < xae) { + y = (*xa & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*xa++ >> 16) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(xc, z, y); + } +#endif + while(!*--xc) + wa--; + c->wds = wa; + return c; +} + +/* Return the absolute difference between x and the adjacent greater-magnitude double number (ignoring exponent overflows). */ +static double ulp(double x) +{ + register Long L; + double a = 0; + + L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; +#ifndef Sudden_Underflow + if (L > 0) { +#endif + set_word0(a, L); + set_word1(a, 0); +#ifndef Sudden_Underflow + } + else { + L = -L >> Exp_shift; + if (L < Exp_shift) { + set_word0(a, 0x80000 >> L); + set_word1(a, 0); + } + else { + set_word0(a, 0); + L -= Exp_shift; + set_word1(a, L >= 31 ? 1 : 1 << (31 - L)); + } + } +#endif + return a; +} + + +static double b2d(Bigint *a, int32 *e) +{ + ULong *xa, *xa0, w, y, z; + int32 k; + double d = 0; +#define d0 word0(d) +#define d1 word1(d) +#define set_d0(x) set_word0(d, x) +#define set_d1(x) set_word1(d, x) + + xa0 = a->x; + xa = xa0 + a->wds; + y = *--xa; +#ifdef DEBUG + if (!y) Bug("zero y in b2d"); +#endif + k = hi0bits(y); + *e = 32 - k; + if (k < Ebits) { + set_d0(Exp_1 | y >> (Ebits - k)); + w = xa > xa0 ? *--xa : 0; + set_d1(y << (32-Ebits + k) | w >> (Ebits - k)); + goto ret_d; + } + z = xa > xa0 ? *--xa : 0; + if (k -= Ebits) { + set_d0(Exp_1 | y << k | z >> (32 - k)); + y = xa > xa0 ? *--xa : 0; + set_d1(z << k | y >> (32 - k)); + } + else { + set_d0(Exp_1 | y); + set_d1(z); + } + ret_d: +#undef d0 +#undef d1 +#undef set_d0 +#undef set_d1 + return d; +} + + +/* Convert d into the form b*2^e, where b is an odd integer. b is the returned + * Bigint and e is the returned binary exponent. Return the number of significant + * bits in b in bits. d must be finite and nonzero. */ +static Bigint *d2b(double d, int32 *e, int32 *bits) +{ + Bigint *b; + int32 de, i, k; + ULong *x, y, z; +#define d0 word0(d) +#define d1 word1(d) +#define set_d0(x) set_word0(d, x) +#define set_d1(x) set_word1(d, x) + + b = Balloc(1); + if (!b) + return NULL; + x = b->x; + + z = d0 & Frac_mask; + set_d0(d0 & 0x7fffffff); /* clear sign bit, which we ignore */ +#ifdef Sudden_Underflow + de = (int32)(d0 >> Exp_shift); + z |= Exp_msk11; +#else + if ((de = (int32)(d0 >> Exp_shift)) != 0) + z |= Exp_msk1; +#endif + if ((y = d1) != 0) { + if ((k = lo0bits(&y)) != 0) { + x[0] = y | z << (32 - k); + z >>= k; + } + else + x[0] = y; + i = b->wds = (x[1] = z) ? 2 : 1; + } + else { + JS_ASSERT(z); + k = lo0bits(&z); + x[0] = z; + i = b->wds = 1; + k += 32; + } +#ifndef Sudden_Underflow + if (de) { +#endif + *e = de - Bias - (P-1) + k; + *bits = P - k; +#ifndef Sudden_Underflow + } + else { + *e = de - Bias - (P-1) + 1 + k; + *bits = 32*i - hi0bits(x[i-1]); + } +#endif + return b; +} +#undef d0 +#undef d1 +#undef set_d0 +#undef set_d1 + + +static double ratio(Bigint *a, Bigint *b) +{ + double da, db; + int32 k, ka, kb; + + da = b2d(a, &ka); + db = b2d(b, &kb); + k = ka - kb + 32*(a->wds - b->wds); + if (k > 0) + set_word0(da, word0(da) + k*Exp_msk1); + else { + k = -k; + set_word0(db, word0(db) + k*Exp_msk1); + } + return da / db; +} + +static CONST double +tens[] = { + 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, + 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, + 1e20, 1e21, 1e22 +}; + +static CONST double bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; +static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, +#ifdef Avoid_Underflow + 9007199254740992.e-256 +#else + 1e-256 +#endif + }; +/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ +/* flag unnecessarily. It leads to a song and dance at the end of strtod. */ +#define Scale_Bit 0x10 +#define n_bigtens 5 + + +#ifdef INFNAN_CHECK + +#ifndef NAN_WORD0 +#define NAN_WORD0 0x7ff80000 +#endif + +#ifndef NAN_WORD1 +#define NAN_WORD1 0 +#endif + +static int match(CONST char **sp, char *t) +{ + int c, d; + CONST char *s = *sp; + + while(d = *t++) { + if ((c = *++s) >= 'A' && c <= 'Z') + c += 'a' - 'A'; + if (c != d) + return 0; + } + *sp = s + 1; + return 1; + } +#endif /* INFNAN_CHECK */ + + +#ifdef JS_THREADSAFE +static JSBool initialized = JS_FALSE; + +/* hacked replica of nspr _PR_InitDtoa */ +static void InitDtoa(void) +{ + freelist_lock = PR_NewLock(); + p5s_lock = PR_NewLock(); + initialized = JS_TRUE; +} +#endif + +void js_FinishDtoa(void) +{ + int count; + Bigint *temp; + +#ifdef JS_THREADSAFE + if (initialized == JS_TRUE) { + PR_DestroyLock(freelist_lock); + PR_DestroyLock(p5s_lock); + initialized = JS_FALSE; + } +#endif + + /* clear down the freelist array and p5s */ + + /* static Bigint *freelist[Kmax+1]; */ + for (count = 0; count <= Kmax; count++) { + Bigint **listp = &freelist[count]; + while ((temp = *listp) != NULL) { + *listp = temp->next; + free(temp); + } + freelist[count] = NULL; + } + + /* static Bigint *p5s; */ + while (p5s) { + temp = p5s; + p5s = p5s->next; + free(temp); + } +} + +/* nspr2 watcom bug ifdef omitted */ + +JS_FRIEND_API(double) +JS_strtod(CONST char *s00, char **se, int *err) +{ + int32 scale; + int32 bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, + e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; + CONST char *s, *s0, *s1; + double aadj, aadj1, adj, rv, rv0; + Long L; + ULong y, z; + Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; + + *err = 0; + + bb = bd = bs = delta = NULL; + sign = nz0 = nz = 0; + rv = 0.; + + /* Locking for Balloc's shared buffers that will be used in this block */ + ACQUIRE_DTOA_LOCK(); + + for(s = s00;;s++) switch(*s) { + case '-': + sign = 1; + /* no break */ + case '+': + if (*++s) + goto break2; + /* no break */ + case 0: + s = s00; + goto ret; + case '\t': + case '\n': + case '\v': + case '\f': + case '\r': + case ' ': + continue; + default: + goto break2; + } +break2: + + if (*s == '0') { + nz0 = 1; + while(*++s == '0') ; + if (!*s) + goto ret; + } + s0 = s; + y = z = 0; + for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) + if (nd < 9) + y = 10*y + c - '0'; + else if (nd < 16) + z = 10*z + c - '0'; + nd0 = nd; + if (c == '.') { + c = *++s; + if (!nd) { + for(; c == '0'; c = *++s) + nz++; + if (c > '0' && c <= '9') { + s0 = s; + nf += nz; + nz = 0; + goto have_dig; + } + goto dig_done; + } + for(; c >= '0' && c <= '9'; c = *++s) { + have_dig: + nz++; + if (c -= '0') { + nf += nz; + for(i = 1; i < nz; i++) + if (nd++ < 9) + y *= 10; + else if (nd <= DBL_DIG + 1) + z *= 10; + if (nd++ < 9) + y = 10*y + c; + else if (nd <= DBL_DIG + 1) + z = 10*z + c; + nz = 0; + } + } + } +dig_done: + e = 0; + if (c == 'e' || c == 'E') { + if (!nd && !nz && !nz0) { + s = s00; + goto ret; + } + s00 = s; + esign = 0; + switch(c = *++s) { + case '-': + esign = 1; + case '+': + c = *++s; + } + if (c >= '0' && c <= '9') { + while(c == '0') + c = *++s; + if (c > '0' && c <= '9') { + L = c - '0'; + s1 = s; + while((c = *++s) >= '0' && c <= '9') + L = 10*L + c - '0'; + if (s - s1 > 8 || L > 19999) + /* Avoid confusion from exponents + * so large that e might overflow. + */ + e = 19999; /* safe for 16 bit ints */ + else + e = (int32)L; + if (esign) + e = -e; + } + else + e = 0; + } + else + s = s00; + } + if (!nd) { + if (!nz && !nz0) { +#ifdef INFNAN_CHECK + /* Check for Nan and Infinity */ + switch(c) { + case 'i': + case 'I': + if (match(&s,"nfinity")) { + word0(rv) = 0x7ff00000; + word1(rv) = 0; + goto ret; + } + break; + case 'n': + case 'N': + if (match(&s, "an")) { + word0(rv) = NAN_WORD0; + word1(rv) = NAN_WORD1; + goto ret; + } + } +#endif /* INFNAN_CHECK */ + s = s00; + } + goto ret; + } + e1 = e -= nf; + + /* Now we have nd0 digits, starting at s0, followed by a + * decimal point, followed by nd-nd0 digits. The number we're + * after is the integer represented by those digits times + * 10**e */ + + if (!nd0) + nd0 = nd; + k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; + rv = y; + if (k > 9) + rv = tens[k - 9] * rv + z; + bd0 = 0; + if (nd <= DBL_DIG +#ifndef RND_PRODQUOT + && FLT_ROUNDS == 1 +#endif + ) { + if (!e) + goto ret; + if (e > 0) { + if (e <= Ten_pmax) { + /* rv = */ rounded_product(rv, tens[e]); + goto ret; + } + i = DBL_DIG - nd; + if (e <= Ten_pmax + i) { + /* A fancier test would sometimes let us do + * this for larger i values. + */ + e -= i; + rv *= tens[i]; + /* rv = */ rounded_product(rv, tens[e]); + goto ret; + } + } +#ifndef Inaccurate_Divide + else if (e >= -Ten_pmax) { + /* rv = */ rounded_quotient(rv, tens[-e]); + goto ret; + } +#endif + } + e1 += nd - k; + + scale = 0; + + /* Get starting approximation = rv * 10**e1 */ + + if (e1 > 0) { + if ((i = e1 & 15) != 0) + rv *= tens[i]; + if (e1 &= ~15) { + if (e1 > DBL_MAX_10_EXP) { + ovfl: + *err = JS_DTOA_ERANGE; +#ifdef __STDC__ + rv = HUGE_VAL; +#else + /* Can't trust HUGE_VAL */ + word0(rv) = Exp_mask; + word1(rv) = 0; +#endif + if (bd0) + goto retfree; + goto ret; + } + e1 >>= 4; + for(j = 0; e1 > 1; j++, e1 >>= 1) + if (e1 & 1) + rv *= bigtens[j]; + /* The last multiplication could overflow. */ + set_word0(rv, word0(rv) - P*Exp_msk1); + rv *= bigtens[j]; + if ((z = word0(rv) & Exp_mask) > Exp_msk1*(DBL_MAX_EXP+Bias-P)) + goto ovfl; + if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { + /* set to largest number */ + /* (Can't trust DBL_MAX) */ + set_word0(rv, Big0); + set_word1(rv, Big1); + } + else + set_word0(rv, word0(rv) + P*Exp_msk1); + } + } + else if (e1 < 0) { + e1 = -e1; + if ((i = e1 & 15) != 0) + rv /= tens[i]; + if (e1 &= ~15) { + e1 >>= 4; + if (e1 >= 1 << n_bigtens) + goto undfl; +#ifdef Avoid_Underflow + if (e1 & Scale_Bit) + scale = P; + for(j = 0; e1 > 0; j++, e1 >>= 1) + if (e1 & 1) + rv *= tinytens[j]; + if (scale && (j = P + 1 - ((word0(rv) & Exp_mask) + >> Exp_shift)) > 0) { + /* scaled rv is denormal; zap j low bits */ + if (j >= 32) { + set_word1(rv, 0); + set_word0(rv, word0(rv) & (0xffffffff << (j-32))); + if (!word0(rv)) + set_word0(rv, 1); + } + else + set_word1(rv, word1(rv) & (0xffffffff << j)); + } +#else + for(j = 0; e1 > 1; j++, e1 >>= 1) + if (e1 & 1) + rv *= tinytens[j]; + /* The last multiplication could underflow. */ + rv0 = rv; + rv *= tinytens[j]; + if (!rv) { + rv = 2.*rv0; + rv *= tinytens[j]; +#endif + if (!rv) { + undfl: + rv = 0.; + *err = JS_DTOA_ERANGE; + if (bd0) + goto retfree; + goto ret; + } +#ifndef Avoid_Underflow + set_word0(rv, Tiny0); + set_word1(rv, Tiny1); + /* The refinement below will clean + * this approximation up. + */ + } +#endif + } + } + + /* Now the hard part -- adjusting rv to the correct value.*/ + + /* Put digits into bd: true value = bd * 10^e */ + + bd0 = s2b(s0, nd0, nd, y); + if (!bd0) + goto nomem; + + for(;;) { + bd = Balloc(bd0->k); + if (!bd) + goto nomem; + Bcopy(bd, bd0); + bb = d2b(rv, &bbe, &bbbits); /* rv = bb * 2^bbe */ + if (!bb) + goto nomem; + bs = i2b(1); + if (!bs) + goto nomem; + + if (e >= 0) { + bb2 = bb5 = 0; + bd2 = bd5 = e; + } + else { + bb2 = bb5 = -e; + bd2 = bd5 = 0; + } + if (bbe >= 0) + bb2 += bbe; + else + bd2 -= bbe; + bs2 = bb2; +#ifdef Sudden_Underflow + j = P + 1 - bbbits; +#else +#ifdef Avoid_Underflow + j = bbe - scale; +#else + j = bbe; +#endif + i = j + bbbits - 1; /* logb(rv) */ + if (i < Emin) /* denormal */ + j += P - Emin; + else + j = P + 1 - bbbits; +#endif + bb2 += j; + bd2 += j; +#ifdef Avoid_Underflow + bd2 += scale; +#endif + i = bb2 < bd2 ? bb2 : bd2; + if (i > bs2) + i = bs2; + if (i > 0) { + bb2 -= i; + bd2 -= i; + bs2 -= i; + } + if (bb5 > 0) { + bs = pow5mult(bs, bb5); + if (!bs) + goto nomem; + bb1 = mult(bs, bb); + if (!bb1) + goto nomem; + Bfree(bb); + bb = bb1; + } + if (bb2 > 0) { + bb = lshift(bb, bb2); + if (!bb) + goto nomem; + } + if (bd5 > 0) { + bd = pow5mult(bd, bd5); + if (!bd) + goto nomem; + } + if (bd2 > 0) { + bd = lshift(bd, bd2); + if (!bd) + goto nomem; + } + if (bs2 > 0) { + bs = lshift(bs, bs2); + if (!bs) + goto nomem; + } + delta = diff(bb, bd); + if (!delta) + goto nomem; + dsign = delta->sign; + delta->sign = 0; + i = cmp(delta, bs); + if (i < 0) { + /* Error is less than half an ulp -- check for + * special case of mantissa a power of two. + */ + if (dsign || word1(rv) || word0(rv) & Bndry_mask +#ifdef Avoid_Underflow + || (word0(rv) & Exp_mask) <= Exp_msk1 + P*Exp_msk1 +#else + || (word0(rv) & Exp_mask) <= Exp_msk1 +#endif + ) { +#ifdef Avoid_Underflow + if (!delta->x[0] && delta->wds == 1) + dsign = 2; +#endif + break; + } + delta = lshift(delta,Log2P); + if (!delta) + goto nomem; + if (cmp(delta, bs) > 0) + goto drop_down; + break; + } + if (i == 0) { + /* exactly half-way between */ + if (dsign) { + if ((word0(rv) & Bndry_mask1) == Bndry_mask1 + && word1(rv) == 0xffffffff) { + /*boundary case -- increment exponent*/ + set_word0(rv, (word0(rv) & Exp_mask) + Exp_msk1); + set_word1(rv, 0); +#ifdef Avoid_Underflow + dsign = 0; +#endif + break; + } + } + else if (!(word0(rv) & Bndry_mask) && !word1(rv)) { +#ifdef Avoid_Underflow + dsign = 2; +#endif + drop_down: + /* boundary case -- decrement exponent */ +#ifdef Sudden_Underflow + L = word0(rv) & Exp_mask; + if (L <= Exp_msk1) + goto undfl; + L -= Exp_msk1; +#else + L = (word0(rv) & Exp_mask) - Exp_msk1; +#endif + set_word0(rv, L | Bndry_mask1); + set_word1(rv, 0xffffffff); + break; + } +#ifndef ROUND_BIASED + if (!(word1(rv) & LSB)) + break; +#endif + if (dsign) + rv += ulp(rv); +#ifndef ROUND_BIASED + else { + rv -= ulp(rv); +#ifndef Sudden_Underflow + if (!rv) + goto undfl; +#endif + } +#ifdef Avoid_Underflow + dsign = 1 - dsign; +#endif +#endif + break; + } + if ((aadj = ratio(delta, bs)) <= 2.) { + if (dsign) + aadj = aadj1 = 1.; + else if (word1(rv) || word0(rv) & Bndry_mask) { +#ifndef Sudden_Underflow + if (word1(rv) == Tiny1 && !word0(rv)) + goto undfl; +#endif + aadj = 1.; + aadj1 = -1.; + } + else { + /* special case -- power of FLT_RADIX to be */ + /* rounded down... */ + + if (aadj < 2./FLT_RADIX) + aadj = 1./FLT_RADIX; + else + aadj *= 0.5; + aadj1 = -aadj; + } + } + else { + aadj *= 0.5; + aadj1 = dsign ? aadj : -aadj; +#ifdef Check_FLT_ROUNDS + switch(FLT_ROUNDS) { + case 2: /* towards +infinity */ + aadj1 -= 0.5; + break; + case 0: /* towards 0 */ + case 3: /* towards -infinity */ + aadj1 += 0.5; + } +#else + if (FLT_ROUNDS == 0) + aadj1 += 0.5; +#endif + } + y = word0(rv) & Exp_mask; + + /* Check for overflow */ + + if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { + rv0 = rv; + set_word0(rv, word0(rv) - P*Exp_msk1); + adj = aadj1 * ulp(rv); + rv += adj; + if ((word0(rv) & Exp_mask) >= + Exp_msk1*(DBL_MAX_EXP+Bias-P)) { + if (word0(rv0) == Big0 && word1(rv0) == Big1) + goto ovfl; + set_word0(rv, Big0); + set_word1(rv, Big1); + goto cont; + } + else + set_word0(rv, word0(rv) + P*Exp_msk1); + } + else { +#ifdef Sudden_Underflow + if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { + rv0 = rv; + set_word0(rv, word0(rv) + P*Exp_msk1); + adj = aadj1 * ulp(rv); + rv += adj; + if ((word0(rv) & Exp_mask) <= P*Exp_msk1) + { + if (word0(rv0) == Tiny0 + && word1(rv0) == Tiny1) + goto undfl; + set_word0(rv, Tiny0); + set_word1(rv, Tiny1); + goto cont; + } + else + set_word0(rv, word0(rv) - P*Exp_msk1); + } + else { + adj = aadj1 * ulp(rv); + rv += adj; + } +#else + /* Compute adj so that the IEEE rounding rules will + * correctly round rv + adj in some half-way cases. + * If rv * ulp(rv) is denormalized (i.e., + * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid + * trouble from bits lost to denormalization; + * example: 1.2e-307 . + */ +#ifdef Avoid_Underflow + if (y <= P*Exp_msk1 && aadj > 1.) +#else + if (y <= (P-1)*Exp_msk1 && aadj > 1.) +#endif + { + aadj1 = (double)(int32)(aadj + 0.5); + if (!dsign) + aadj1 = -aadj1; + } +#ifdef Avoid_Underflow + if (scale && y <= P*Exp_msk1) + set_word0(aadj1, word0(aadj1) + (P+1)*Exp_msk1 - y); +#endif + adj = aadj1 * ulp(rv); + rv += adj; +#endif + } + z = word0(rv) & Exp_mask; +#ifdef Avoid_Underflow + if (!scale) +#endif + if (y == z) { + /* Can we stop now? */ + L = (Long)aadj; + aadj -= L; + /* The tolerances below are conservative. */ + if (dsign || word1(rv) || word0(rv) & Bndry_mask) { + if (aadj < .4999999 || aadj > .5000001) + break; + } + else if (aadj < .4999999/FLT_RADIX) + break; + } + cont: + Bfree(bb); + Bfree(bd); + Bfree(bs); + Bfree(delta); + bb = bd = bs = delta = NULL; + } +#ifdef Avoid_Underflow + if (scale) { + set_word0(rv0, Exp_1 - P*Exp_msk1); + set_word1(rv0, 0); + if ((word0(rv) & Exp_mask) <= P*Exp_msk1 + && word1(rv) & 1 + && dsign != 2) { + if (dsign) { +#ifdef Sudden_Underflow + /* rv will be 0, but this would give the */ + /* right result if only rv *= rv0 worked. */ + set_word0(rv, word0(rv) + P*Exp_msk1); + set_word0(rv0, Exp_1 - 2*P*Exp_msk1); +#endif + rv += ulp(rv); + } + else + set_word1(rv, word1(rv) & ~1); + } + rv *= rv0; + } +#endif /* Avoid_Underflow */ +retfree: + Bfree(bb); + Bfree(bd); + Bfree(bs); + Bfree(bd0); + Bfree(delta); +ret: + RELEASE_DTOA_LOCK(); + if (se) + *se = (char *)s; + return sign ? -rv : rv; + +nomem: + Bfree(bb); + Bfree(bd); + Bfree(bs); + Bfree(bd0); + Bfree(delta); + *err = JS_DTOA_ENOMEM; + return 0; +} + + +/* Return floor(b/2^k) and set b to be the remainder. The returned quotient must be less than 2^32. */ +static uint32 quorem2(Bigint *b, int32 k) +{ + ULong mask; + ULong result; + ULong *bx, *bxe; + int32 w; + int32 n = k >> 5; + k &= 0x1F; + mask = (1<wds - n; + if (w <= 0) + return 0; + JS_ASSERT(w <= 2); + bx = b->x; + bxe = bx + n; + result = *bxe >> k; + *bxe &= mask; + if (w == 2) { + JS_ASSERT(!(bxe[1] & ~mask)); + if (k) + result |= bxe[1] << (32 - k); + } + n++; + while (!*bxe && bxe != bx) { + n--; + bxe--; + } + b->wds = n; + return result; +} + +/* Return floor(b/S) and set b to be the remainder. As added restrictions, b must not have + * more words than S, the most significant word of S must not start with a 1 bit, and the + * returned quotient must be less than 36. */ +static int32 quorem(Bigint *b, Bigint *S) +{ + int32 n; + ULong *bx, *bxe, q, *sx, *sxe; +#ifdef ULLong + ULLong borrow, carry, y, ys; +#else + ULong borrow, carry, y, ys; + ULong si, z, zs; +#endif + + n = S->wds; + JS_ASSERT(b->wds <= n); + if (b->wds < n) + return 0; + sx = S->x; + sxe = sx + --n; + bx = b->x; + bxe = bx + n; + JS_ASSERT(*sxe <= 0x7FFFFFFF); + q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ + JS_ASSERT(q < 36); + if (q) { + borrow = 0; + carry = 0; + do { +#ifdef ULLong + ys = *sx++ * (ULLong)q + carry; + carry = ys >> 32; + y = *bx - (ys & 0xffffffffUL) - borrow; + borrow = y >> 32 & 1UL; + *bx++ = (ULong)(y & 0xffffffffUL); +#else + si = *sx++; + ys = (si & 0xffff) * q + carry; + zs = (si >> 16) * q + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*bx >> 16) - (zs & 0xffff) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(bx, z, y); +#endif + } + while(sx <= sxe); + if (!*bxe) { + bx = b->x; + while(--bxe > bx && !*bxe) + --n; + b->wds = n; + } + } + if (cmp(b, S) >= 0) { + q++; + borrow = 0; + carry = 0; + bx = b->x; + sx = S->x; + do { +#ifdef ULLong + ys = *sx++ + carry; + carry = ys >> 32; + y = *bx - (ys & 0xffffffffUL) - borrow; + borrow = y >> 32 & 1UL; + *bx++ = (ULong)(y & 0xffffffffUL); +#else + si = *sx++; + ys = (si & 0xffff) + carry; + zs = (si >> 16) + (ys >> 16); + carry = zs >> 16; + y = (*bx & 0xffff) - (ys & 0xffff) - borrow; + borrow = (y & 0x10000) >> 16; + z = (*bx >> 16) - (zs & 0xffff) - borrow; + borrow = (z & 0x10000) >> 16; + Storeinc(bx, z, y); +#endif + } while(sx <= sxe); + bx = b->x; + bxe = bx + n; + if (!*bxe) { + while(--bxe > bx && !*bxe) + --n; + b->wds = n; + } + } + return (int32)q; +} + +/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. + * + * Inspired by "How to Print Floating-Point Numbers Accurately" by + * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101]. + * + * Modifications: + * 1. Rather than iterating, we use a simple numeric overestimate + * to determine k = floor(log10(d)). We scale relevant + * quantities using O(log2(k)) rather than O(k) multiplications. + * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't + * try to generate digits strictly left to right. Instead, we + * compute with fewer bits and propagate the carry if necessary + * when rounding the final digit up. This is often faster. + * 3. Under the assumption that input will be rounded nearest, + * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. + * That is, we allow equality in stopping tests when the + * round-nearest rule will give the same floating-point value + * as would satisfaction of the stopping test with strict + * inequality. + * 4. We remove common factors of powers of 2 from relevant + * quantities. + * 5. When converting floating-point integers less than 1e16, + * we use floating-point arithmetic rather than resorting + * to multiple-precision integers. + * 6. When asked to produce fewer than 15 digits, we first try + * to get by with floating-point arithmetic; we resort to + * multiple-precision integer arithmetic only if we cannot + * guarantee that the floating-point calculation has given + * the correctly rounded result. For k requested digits and + * "uniformly" distributed input, the probability is + * something like 10^(k-15) that we must resort to the Long + * calculation. + */ + +/* Always emits at least one digit. */ +/* If biasUp is set, then rounding in modes 2 and 3 will round away from zero + * when the number is exactly halfway between two representable values. For example, + * rounding 2.5 to zero digits after the decimal point will return 3 and not 2. + * 2.49 will still round to 2, and 2.51 will still round to 3. */ +/* bufsize should be at least 20 for modes 0 and 1. For the other modes, + * bufsize should be two greater than the maximum number of output characters expected. */ +static JSBool +js_dtoa(double d, int mode, JSBool biasUp, int ndigits, + int *decpt, int *sign, char **rve, char *buf, size_t bufsize) +{ + /* Arguments ndigits, decpt, sign are similar to those + of ecvt and fcvt; trailing zeros are suppressed from + the returned string. If not null, *rve is set to point + to the end of the return value. If d is +-Infinity or NaN, + then *decpt is set to 9999. + + mode: + 0 ==> shortest string that yields d when read in + and rounded to nearest. + 1 ==> like 0, but with Steele & White stopping rule; + e.g. with IEEE P754 arithmetic , mode 0 gives + 1e23 whereas mode 1 gives 9.999999999999999e22. + 2 ==> max(1,ndigits) significant digits. This gives a + return value similar to that of ecvt, except + that trailing zeros are suppressed. + 3 ==> through ndigits past the decimal point. This + gives a return value similar to that from fcvt, + except that trailing zeros are suppressed, and + ndigits can be negative. + 4-9 should give the same return values as 2-3, i.e., + 4 <= mode <= 9 ==> same return as mode + 2 + (mode & 1). These modes are mainly for + debugging; often they run slower but sometimes + faster than modes 2-3. + 4,5,8,9 ==> left-to-right digit generation. + 6-9 ==> don't try fast floating-point estimate + (if applicable). + + Values of mode other than 0-9 are treated as mode 0. + + Sufficient space is allocated to the return value + to hold the suppressed trailing zeros. + */ + + int32 bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, + j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, + spec_case, try_quick; + Long L; +#ifndef Sudden_Underflow + int32 denorm; + ULong x; +#endif + Bigint *b, *b1, *delta, *mlo, *mhi, *S; + double d2, ds, eps; + char *s; + + if (word0(d) & Sign_bit) { + /* set sign for everything, including 0's and NaNs */ + *sign = 1; + set_word0(d, word0(d) & ~Sign_bit); /* clear sign bit */ + } + else + *sign = 0; + + if ((word0(d) & Exp_mask) == Exp_mask) { + /* Infinity or NaN */ + *decpt = 9999; + s = !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN"; + if ((s[0] == 'I' && bufsize < 9) || (s[0] == 'N' && bufsize < 4)) { + JS_ASSERT(JS_FALSE); +/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */ + return JS_FALSE; + } + strcpy(buf, s); + if (rve) { + *rve = buf[3] ? buf + 8 : buf + 3; + JS_ASSERT(**rve == '\0'); + } + return JS_TRUE; + } + + b = NULL; /* initialize for abort protection */ + S = NULL; + mlo = mhi = NULL; + + if (!d) { + no_digits: + *decpt = 1; + if (bufsize < 2) { + JS_ASSERT(JS_FALSE); +/* JS_SetError(JS_BUFFER_OVERFLOW_ERROR, 0); */ + return JS_FALSE; + } + buf[0] = '0'; buf[1] = '\0'; /* copy "0" to buffer */ + if (rve) + *rve = buf + 1; + /* We might have jumped to "no_digits" from below, so we need + * to be sure to free the potentially allocated Bigints to avoid + * memory leaks. */ + Bfree(b); + Bfree(S); + if (mlo != mhi) + Bfree(mlo); + Bfree(mhi); + return JS_TRUE; + } + + b = d2b(d, &be, &bbits); + if (!b) + goto nomem; +#ifdef Sudden_Underflow + i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); +#else + if ((i = (int32)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) != 0) { +#endif + d2 = d; + set_word0(d2, word0(d2) & Frac_mask1); + set_word0(d2, word0(d2) | Exp_11); + + /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 + * log10(x) = log(x) / log(10) + * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) + * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) + * + * This suggests computing an approximation k to log10(d) by + * + * k = (i - Bias)*0.301029995663981 + * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); + * + * We want k to be too large rather than too small. + * The error in the first-order Taylor series approximation + * is in our favor, so we just round up the constant enough + * to compensate for any error in the multiplication of + * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, + * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, + * adding 1e-13 to the constant term more than suffices. + * Hence we adjust the constant term to 0.1760912590558. + * (We could get a more accurate k by invoking log10, + * but this is probably not worthwhile.) + */ + + i -= Bias; +#ifndef Sudden_Underflow + denorm = 0; + } + else { + /* d is denormalized */ + + i = bbits + be + (Bias + (P-1) - 1); + x = i > 32 ? word0(d) << (64 - i) | word1(d) >> (i - 32) : word1(d) << (32 - i); + d2 = x; + set_word0(d2, word0(d2) - 31*Exp_msk1); /* adjust exponent */ + i -= (Bias + (P-1) - 1) + 1; + denorm = 1; + } +#endif + /* At this point d = f*2^i, where 1 <= f < 2. d2 is an approximation of f. */ + ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; + k = (int32)ds; + if (ds < 0. && ds != k) + k--; /* want k = floor(ds) */ + k_check = 1; + if (k >= 0 && k <= Ten_pmax) { + if (d < tens[k]) + k--; + k_check = 0; + } + /* At this point floor(log10(d)) <= k <= floor(log10(d))+1. + If k_check is zero, we're guaranteed that k = floor(log10(d)). */ + j = bbits - i - 1; + /* At this point d = b/2^j, where b is an odd integer. */ + if (j >= 0) { + b2 = 0; + s2 = j; + } + else { + b2 = -j; + s2 = 0; + } + if (k >= 0) { + b5 = 0; + s5 = k; + s2 += k; + } + else { + b2 -= k; + b5 = -k; + s5 = 0; + } + /* At this point d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5), where b is an odd integer, + b2 >= 0, b5 >= 0, s2 >= 0, and s5 >= 0. */ + if (mode < 0 || mode > 9) + mode = 0; + try_quick = 1; + if (mode > 5) { + mode -= 4; + try_quick = 0; + } + leftright = 1; + ilim = ilim1 = 0; + switch(mode) { + case 0: + case 1: + ilim = ilim1 = -1; + i = 18; + ndigits = 0; + break; + case 2: + leftright = 0; + /* no break */ + case 4: + if (ndigits <= 0) + ndigits = 1; + ilim = ilim1 = i = ndigits; + break; + case 3: + leftright = 0; + /* no break */ + case 5: + i = ndigits + k + 1; + ilim = i; + ilim1 = i - 1; + if (i <= 0) + i = 1; + } + /* ilim is the maximum number of significant digits we want, based on k and ndigits. */ + /* ilim1 is the maximum number of significant digits we want, based on k and ndigits, + when it turns out that k was computed too high by one. */ + + /* Ensure space for at least i+1 characters, including trailing null. */ + if (bufsize <= (size_t)i) { + Bfree(b); + JS_ASSERT(JS_FALSE); + return JS_FALSE; + } + s = buf; + + if (ilim >= 0 && ilim <= Quick_max && try_quick) { + + /* Try to get by with floating-point arithmetic. */ + + i = 0; + d2 = d; + k0 = k; + ilim0 = ilim; + ieps = 2; /* conservative */ + /* Divide d by 10^k, keeping track of the roundoff error and avoiding overflows. */ + if (k > 0) { + ds = tens[k&0xf]; + j = k >> 4; + if (j & Bletch) { + /* prevent overflows */ + j &= Bletch - 1; + d /= bigtens[n_bigtens-1]; + ieps++; + } + for(; j; j >>= 1, i++) + if (j & 1) { + ieps++; + ds *= bigtens[i]; + } + d /= ds; + } + else if ((j1 = -k) != 0) { + d *= tens[j1 & 0xf]; + for(j = j1 >> 4; j; j >>= 1, i++) + if (j & 1) { + ieps++; + d *= bigtens[i]; + } + } + /* Check that k was computed correctly. */ + if (k_check && d < 1. && ilim > 0) { + if (ilim1 <= 0) + goto fast_failed; + ilim = ilim1; + k--; + d *= 10.; + ieps++; + } + /* eps bounds the cumulative error. */ + eps = ieps*d + 7.; + set_word0(eps, word0(eps) - (P-1)*Exp_msk1); + if (ilim == 0) { + S = mhi = 0; + d -= 5.; + if (d > eps) + goto one_digit; + if (d < -eps) + goto no_digits; + goto fast_failed; + } +#ifndef No_leftright + if (leftright) { + /* Use Steele & White method of only + * generating digits needed. + */ + eps = 0.5/tens[ilim-1] - eps; + for(i = 0;;) { + L = (Long)d; + d -= L; + *s++ = '0' + (char)L; + if (d < eps) + goto ret1; + if (1. - d < eps) + goto bump_up; + if (++i >= ilim) + break; + eps *= 10.; + d *= 10.; + } + } + else { +#endif + /* Generate ilim digits, then fix them up. */ + eps *= tens[ilim-1]; + for(i = 1;; i++, d *= 10.) { + L = (Long)d; + d -= L; + *s++ = '0' + (char)L; + if (i == ilim) { + if (d > 0.5 + eps) + goto bump_up; + else if (d < 0.5 - eps) { + while(*--s == '0') ; + s++; + goto ret1; + } + break; + } + } +#ifndef No_leftright + } +#endif + fast_failed: + s = buf; + d = d2; + k = k0; + ilim = ilim0; + } + + /* Do we have a "small" integer? */ + + if (be >= 0 && k <= Int_max) { + /* Yes. */ + ds = tens[k]; + if (ndigits < 0 && ilim <= 0) { + S = mhi = 0; + if (ilim < 0 || d < 5*ds || (!biasUp && d == 5*ds)) + goto no_digits; + goto one_digit; + } + for(i = 1;; i++) { + L = (Long) (d / ds); + d -= L*ds; +#ifdef Check_FLT_ROUNDS + /* If FLT_ROUNDS == 2, L will usually be high by 1 */ + if (d < 0) { + L--; + d += ds; + } +#endif + *s++ = '0' + (char)L; + if (i == ilim) { + d += d; + if ((d > ds) || (d == ds && (L & 1 || biasUp))) { + bump_up: + while(*--s == '9') + if (s == buf) { + k++; + *s = '0'; + break; + } + ++*s++; + } + break; + } + if (!(d *= 10.)) + break; + } + goto ret1; + } + + m2 = b2; + m5 = b5; + if (leftright) { + if (mode < 2) { + i = +#ifndef Sudden_Underflow + denorm ? be + (Bias + (P-1) - 1 + 1) : +#endif + 1 + P - bbits; + /* i is 1 plus the number of trailing zero bits in d's significand. Thus, + (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 lsb of d)/10^k. */ + } + else { + j = ilim - 1; + if (m5 >= j) + m5 -= j; + else { + s5 += j -= m5; + b5 += j; + m5 = 0; + } + if ((i = ilim) < 0) { + m2 -= i; + i = 0; + } + /* (2^m2 * 5^m5) / (2^(s2+i) * 5^s5) = (1/2 * 10^(1-ilim))/10^k. */ + } + b2 += i; + s2 += i; + mhi = i2b(1); + if (!mhi) + goto nomem; + /* (mhi * 2^m2 * 5^m5) / (2^s2 * 5^s5) = one-half of last printed (when mode >= 2) or + input (when mode < 2) significant digit, divided by 10^k. */ + } + /* We still have d/10^k = (b * 2^b2 * 5^b5) / (2^s2 * 5^s5). Reduce common factors in + b2, m2, and s2 without changing the equalities. */ + if (m2 > 0 && s2 > 0) { + i = m2 < s2 ? m2 : s2; + b2 -= i; + m2 -= i; + s2 -= i; + } + + /* Fold b5 into b and m5 into mhi. */ + if (b5 > 0) { + if (leftright) { + if (m5 > 0) { + mhi = pow5mult(mhi, m5); + if (!mhi) + goto nomem; + b1 = mult(mhi, b); + if (!b1) + goto nomem; + Bfree(b); + b = b1; + } + if ((j = b5 - m5) != 0) { + b = pow5mult(b, j); + if (!b) + goto nomem; + } + } + else { + b = pow5mult(b, b5); + if (!b) + goto nomem; + } + } + /* Now we have d/10^k = (b * 2^b2) / (2^s2 * 5^s5) and + (mhi * 2^m2) / (2^s2 * 5^s5) = one-half of last printed or input significant digit, divided by 10^k. */ + + S = i2b(1); + if (!S) + goto nomem; + if (s5 > 0) { + S = pow5mult(S, s5); + if (!S) + goto nomem; + } + /* Now we have d/10^k = (b * 2^b2) / (S * 2^s2) and + (mhi * 2^m2) / (S * 2^s2) = one-half of last printed or input significant digit, divided by 10^k. */ + + /* Check for special case that d is a normalized power of 2. */ + spec_case = 0; + if (mode < 2) { + if (!word1(d) && !(word0(d) & Bndry_mask) +#ifndef Sudden_Underflow + && word0(d) & (Exp_mask & Exp_mask << 1) +#endif + ) { + /* The special case. Here we want to be within a quarter of the last input + significant digit instead of one half of it when the decimal output string's value is less than d. */ + b2 += Log2P; + s2 += Log2P; + spec_case = 1; + } + } + + /* Arrange for convenient computation of quotients: + * shift left if necessary so divisor has 4 leading 0 bits. + * + * Perhaps we should just compute leading 28 bits of S once + * and for all and pass them and a shift to quorem, so it + * can do shifts and ors to compute the numerator for q. + */ + if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) != 0) + i = 32 - i; + /* i is the number of leading zero bits in the most significant word of S*2^s2. */ + if (i > 4) { + i -= 4; + b2 += i; + m2 += i; + s2 += i; + } + else if (i < 4) { + i += 28; + b2 += i; + m2 += i; + s2 += i; + } + /* Now S*2^s2 has exactly four leading zero bits in its most significant word. */ + if (b2 > 0) { + b = lshift(b, b2); + if (!b) + goto nomem; + } + if (s2 > 0) { + S = lshift(S, s2); + if (!S) + goto nomem; + } + /* Now we have d/10^k = b/S and + (mhi * 2^m2) / S = maximum acceptable error, divided by 10^k. */ + if (k_check) { + if (cmp(b,S) < 0) { + k--; + b = multadd(b, 10, 0); /* we botched the k estimate */ + if (!b) + goto nomem; + if (leftright) { + mhi = multadd(mhi, 10, 0); + if (!mhi) + goto nomem; + } + ilim = ilim1; + } + } + /* At this point 1 <= d/10^k = b/S < 10. */ + + if (ilim <= 0 && mode > 2) { + /* We're doing fixed-mode output and d is less than the minimum nonzero output in this mode. + Output either zero or the minimum nonzero output depending on which is closer to d. */ + if (ilim < 0) + goto no_digits; + S = multadd(S,5,0); + if (!S) + goto nomem; + i = cmp(b,S); + if (i < 0 || (i == 0 && !biasUp)) { + /* Always emit at least one digit. If the number appears to be zero + using the current mode, then emit one '0' digit and set decpt to 1. */ + /*no_digits: + k = -1 - ndigits; + goto ret; */ + goto no_digits; + } + one_digit: + *s++ = '1'; + k++; + goto ret; + } + if (leftright) { + if (m2 > 0) { + mhi = lshift(mhi, m2); + if (!mhi) + goto nomem; + } + + /* Compute mlo -- check for special case + * that d is a normalized power of 2. + */ + + mlo = mhi; + if (spec_case) { + mhi = Balloc(mhi->k); + if (!mhi) + goto nomem; + Bcopy(mhi, mlo); + mhi = lshift(mhi, Log2P); + if (!mhi) + goto nomem; + } + /* mlo/S = maximum acceptable error, divided by 10^k, if the output is less than d. */ + /* mhi/S = maximum acceptable error, divided by 10^k, if the output is greater than d. */ + + for(i = 1;;i++) { + dig = quorem(b,S) + '0'; + /* Do we yet have the shortest decimal string + * that will round to d? + */ + j = cmp(b, mlo); + /* j is b/S compared with mlo/S. */ + delta = diff(S, mhi); + if (!delta) + goto nomem; + j1 = delta->sign ? 1 : cmp(b, delta); + Bfree(delta); + /* j1 is b/S compared with 1 - mhi/S. */ +#ifndef ROUND_BIASED + if (j1 == 0 && !mode && !(word1(d) & 1)) { + if (dig == '9') + goto round_9_up; + if (j > 0) + dig++; + *s++ = (char)dig; + goto ret; + } +#endif + if ((j < 0) || (j == 0 && !mode +#ifndef ROUND_BIASED + && !(word1(d) & 1) +#endif + )) { + if (j1 > 0) { + /* Either dig or dig+1 would work here as the least significant decimal digit. + Use whichever would produce a decimal value closer to d. */ + b = lshift(b, 1); + if (!b) + goto nomem; + j1 = cmp(b, S); + if (((j1 > 0) || (j1 == 0 && (dig & 1 || biasUp))) + && (dig++ == '9')) + goto round_9_up; + } + *s++ = (char)dig; + goto ret; + } + if (j1 > 0) { + if (dig == '9') { /* possible if i == 1 */ + round_9_up: + *s++ = '9'; + goto roundoff; + } + *s++ = (char)dig + 1; + goto ret; + } + *s++ = (char)dig; + if (i == ilim) + break; + b = multadd(b, 10, 0); + if (!b) + goto nomem; + if (mlo == mhi) { + mlo = mhi = multadd(mhi, 10, 0); + if (!mhi) + goto nomem; + } + else { + mlo = multadd(mlo, 10, 0); + if (!mlo) + goto nomem; + mhi = multadd(mhi, 10, 0); + if (!mhi) + goto nomem; + } + } + } + else + for(i = 1;; i++) { + *s++ = (char)(dig = quorem(b,S) + '0'); + if (i >= ilim) + break; + b = multadd(b, 10, 0); + if (!b) + goto nomem; + } + + /* Round off last digit */ + + b = lshift(b, 1); + if (!b) + goto nomem; + j = cmp(b, S); + if ((j > 0) || (j == 0 && (dig & 1 || biasUp))) { + roundoff: + while(*--s == '9') + if (s == buf) { + k++; + *s++ = '1'; + goto ret; + } + ++*s++; + } + else { + /* Strip trailing zeros */ + while(*--s == '0') ; + s++; + } + ret: + Bfree(S); + if (mhi) { + if (mlo && mlo != mhi) + Bfree(mlo); + Bfree(mhi); + } + ret1: + Bfree(b); + JS_ASSERT(s < buf + bufsize); + *s = '\0'; + if (rve) + *rve = s; + *decpt = k + 1; + return JS_TRUE; + +nomem: + Bfree(S); + if (mhi) { + if (mlo && mlo != mhi) + Bfree(mlo); + Bfree(mhi); + } + Bfree(b); + return JS_FALSE; +} + + +/* Mapping of JSDToStrMode -> js_dtoa mode */ +static const int dtoaModes[] = { + 0, /* DTOSTR_STANDARD */ + 0, /* DTOSTR_STANDARD_EXPONENTIAL, */ + 3, /* DTOSTR_FIXED, */ + 2, /* DTOSTR_EXPONENTIAL, */ + 2}; /* DTOSTR_PRECISION */ + +JS_FRIEND_API(char *) +JS_dtostr(char *buffer, size_t bufferSize, JSDToStrMode mode, int precision, double d) +{ + int decPt; /* Position of decimal point relative to first digit returned by js_dtoa */ + int sign; /* Nonzero if the sign bit was set in d */ + int nDigits; /* Number of significand digits returned by js_dtoa */ + char *numBegin = buffer+2; /* Pointer to the digits returned by js_dtoa; the +2 leaves space for */ + /* the sign and/or decimal point */ + char *numEnd; /* Pointer past the digits returned by js_dtoa */ + JSBool dtoaRet; + + JS_ASSERT(bufferSize >= (size_t)(mode <= DTOSTR_STANDARD_EXPONENTIAL ? DTOSTR_STANDARD_BUFFER_SIZE : + DTOSTR_VARIABLE_BUFFER_SIZE(precision))); + + if (mode == DTOSTR_FIXED && (d >= 1e21 || d <= -1e21)) + mode = DTOSTR_STANDARD; /* Change mode here rather than below because the buffer may not be large enough to hold a large integer. */ + + /* Locking for Balloc's shared buffers */ + ACQUIRE_DTOA_LOCK(); + dtoaRet = js_dtoa(d, dtoaModes[mode], mode >= DTOSTR_FIXED, precision, &decPt, &sign, &numEnd, numBegin, bufferSize-2); + RELEASE_DTOA_LOCK(); + if (!dtoaRet) + return 0; + + nDigits = numEnd - numBegin; + + /* If Infinity, -Infinity, or NaN, return the string regardless of the mode. */ + if (decPt != 9999) { + JSBool exponentialNotation = JS_FALSE; + int minNDigits = 0; /* Minimum number of significand digits required by mode and precision */ + char *p; + char *q; + + switch (mode) { + case DTOSTR_STANDARD: + if (decPt < -5 || decPt > 21) + exponentialNotation = JS_TRUE; + else + minNDigits = decPt; + break; + + case DTOSTR_FIXED: + if (precision >= 0) + minNDigits = decPt + precision; + else + minNDigits = decPt; + break; + + case DTOSTR_EXPONENTIAL: + JS_ASSERT(precision > 0); + minNDigits = precision; + /* Fall through */ + case DTOSTR_STANDARD_EXPONENTIAL: + exponentialNotation = JS_TRUE; + break; + + case DTOSTR_PRECISION: + JS_ASSERT(precision > 0); + minNDigits = precision; + if (decPt < -5 || decPt > precision) + exponentialNotation = JS_TRUE; + break; + } + + /* If the number has fewer than minNDigits, pad it with zeros at the end */ + if (nDigits < minNDigits) { + p = numBegin + minNDigits; + nDigits = minNDigits; + do { + *numEnd++ = '0'; + } while (numEnd != p); + *numEnd = '\0'; + } + + if (exponentialNotation) { + /* Insert a decimal point if more than one significand digit */ + if (nDigits != 1) { + numBegin--; + numBegin[0] = numBegin[1]; + numBegin[1] = '.'; + } + JS_snprintf(numEnd, bufferSize - (numEnd - buffer), "e%+d", decPt-1); + } else if (decPt != nDigits) { + /* Some kind of a fraction in fixed notation */ + JS_ASSERT(decPt <= nDigits); + if (decPt > 0) { + /* dd...dd . dd...dd */ + p = --numBegin; + do { + *p = p[1]; + p++; + } while (--decPt); + *p = '.'; + } else { + /* 0 . 00...00dd...dd */ + p = numEnd; + numEnd += 1 - decPt; + q = numEnd; + JS_ASSERT(numEnd < buffer + bufferSize); + *numEnd = '\0'; + while (p != numBegin) + *--q = *--p; + for (p = numBegin + 1; p != q; p++) + *p = '0'; + *numBegin = '.'; + *--numBegin = '0'; + } + } + } + + /* If negative and neither -0.0 nor NaN, output a leading '-'. */ + if (sign && + !(word0(d) == Sign_bit && word1(d) == 0) && + !((word0(d) & Exp_mask) == Exp_mask && + (word1(d) || (word0(d) & Frac_mask)))) { + *--numBegin = '-'; + } + return numBegin; +} + + +/* Let b = floor(b / divisor), and return the remainder. b must be nonnegative. + * divisor must be between 1 and 65536. + * This function cannot run out of memory. */ +static uint32 +divrem(Bigint *b, uint32 divisor) +{ + int32 n = b->wds; + uint32 remainder = 0; + ULong *bx; + ULong *bp; + + JS_ASSERT(divisor > 0 && divisor <= 65536); + + if (!n) + return 0; /* b is zero */ + bx = b->x; + bp = bx + n; + do { + ULong a = *--bp; + ULong dividend = remainder << 16 | a >> 16; + ULong quotientHi = dividend / divisor; + ULong quotientLo; + + remainder = dividend - quotientHi*divisor; + JS_ASSERT(quotientHi <= 0xFFFF && remainder < divisor); + dividend = remainder << 16 | (a & 0xFFFF); + quotientLo = dividend / divisor; + remainder = dividend - quotientLo*divisor; + JS_ASSERT(quotientLo <= 0xFFFF && remainder < divisor); + *bp = quotientHi << 16 | quotientLo; + } while (bp != bx); + /* Decrease the size of the number if its most significant word is now zero. */ + if (bx[n-1] == 0) + b->wds--; + return remainder; +} + + +/* "-0.0000...(1073 zeros after decimal point)...0001\0" is the longest string that we could produce, + * which occurs when printing -5e-324 in binary. We could compute a better estimate of the size of + * the output string and malloc fewer bytes depending on d and base, but why bother? */ +#define DTOBASESTR_BUFFER_SIZE 1078 +#define BASEDIGIT(digit) ((char)(((digit) >= 10) ? 'a' - 10 + (digit) : '0' + (digit))) + +JS_FRIEND_API(char *) +JS_dtobasestr(int base, double d) +{ + char *buffer; /* The output string */ + char *p; /* Pointer to current position in the buffer */ + char *pInt; /* Pointer to the beginning of the integer part of the string */ + char *q; + uint32 digit; + double di; /* d truncated to an integer */ + double df; /* The fractional part of d */ + + JS_ASSERT(base >= 2 && base <= 36); + + buffer = (char*) malloc(DTOBASESTR_BUFFER_SIZE); + if (buffer) { + p = buffer; + if (d < 0.0 +#if defined(XP_WIN) || defined(XP_OS2) + && !((word0(d) & Exp_mask) == Exp_mask && ((word0(d) & Frac_mask) || word1(d))) /* Visual C++ doesn't know how to compare against NaN */ +#endif + ) { + *p++ = '-'; + d = -d; + } + + /* Check for Infinity and NaN */ + if ((word0(d) & Exp_mask) == Exp_mask) { + strcpy(p, !word1(d) && !(word0(d) & Frac_mask) ? "Infinity" : "NaN"); + return buffer; + } + + /* Locking for Balloc's shared buffers */ + ACQUIRE_DTOA_LOCK(); + + /* Output the integer part of d with the digits in reverse order. */ + pInt = p; + di = fd_floor(d); + if (di <= 4294967295.0) { + uint32 n = (uint32)di; + if (n) + do { + uint32 m = n / base; + digit = n - m*base; + n = m; + JS_ASSERT(digit < (uint32)base); + *p++ = BASEDIGIT(digit); + } while (n); + else *p++ = '0'; + } else { + int32 e; + int32 bits; /* Number of significant bits in di; not used. */ + Bigint *b = d2b(di, &e, &bits); + if (!b) + goto nomem1; + b = lshift(b, e); + if (!b) { + nomem1: + Bfree(b); + return NULL; + } + do { + digit = divrem(b, base); + JS_ASSERT(digit < (uint32)base); + *p++ = BASEDIGIT(digit); + } while (b->wds); + Bfree(b); + } + /* Reverse the digits of the integer part of d. */ + q = p-1; + while (q > pInt) { + char ch = *pInt; + *pInt++ = *q; + *q-- = ch; + } + + df = d - di; + if (df != 0.0) { + /* We have a fraction. */ + int32 e, bbits, s2, done; + Bigint *b, *s, *mlo, *mhi; + + b = s = mlo = mhi = NULL; + + *p++ = '.'; + b = d2b(df, &e, &bbits); + if (!b) { + nomem2: + Bfree(b); + Bfree(s); + if (mlo != mhi) + Bfree(mlo); + Bfree(mhi); + return NULL; + } + JS_ASSERT(e < 0); + /* At this point df = b * 2^e. e must be less than zero because 0 < df < 1. */ + + s2 = -(int32)(word0(d) >> Exp_shift1 & Exp_mask>>Exp_shift1); +#ifndef Sudden_Underflow + if (!s2) + s2 = -1; +#endif + s2 += Bias + P; + /* 1/2^s2 = (nextDouble(d) - d)/2 */ + JS_ASSERT(-s2 < e); + mlo = i2b(1); + if (!mlo) + goto nomem2; + mhi = mlo; + if (!word1(d) && !(word0(d) & Bndry_mask) +#ifndef Sudden_Underflow + && word0(d) & (Exp_mask & Exp_mask << 1) +#endif + ) { + /* The special case. Here we want to be within a quarter of the last input + significant digit instead of one half of it when the output string's value is less than d. */ + s2 += Log2P; + mhi = i2b(1< df = b/2^s2 > 0; + * (d - prevDouble(d))/2 = mlo/2^s2; + * (nextDouble(d) - d)/2 = mhi/2^s2. */ + + done = JS_FALSE; + do { + int32 j, j1; + Bigint *delta; + + b = multadd(b, base, 0); + if (!b) + goto nomem2; + digit = quorem2(b, s2); + if (mlo == mhi) { + mlo = mhi = multadd(mlo, base, 0); + if (!mhi) + goto nomem2; + } + else { + mlo = multadd(mlo, base, 0); + if (!mlo) + goto nomem2; + mhi = multadd(mhi, base, 0); + if (!mhi) + goto nomem2; + } + + /* Do we yet have the shortest string that will round to d? */ + j = cmp(b, mlo); + /* j is b/2^s2 compared with mlo/2^s2. */ + delta = diff(s, mhi); + if (!delta) + goto nomem2; + j1 = delta->sign ? 1 : cmp(b, delta); + Bfree(delta); + /* j1 is b/2^s2 compared with 1 - mhi/2^s2. */ + +#ifndef ROUND_BIASED + if (j1 == 0 && !(word1(d) & 1)) { + if (j > 0) + digit++; + done = JS_TRUE; + } else +#endif + if (j < 0 || (j == 0 +#ifndef ROUND_BIASED + && !(word1(d) & 1) +#endif + )) { + if (j1 > 0) { + /* Either dig or dig+1 would work here as the least significant digit. + Use whichever would produce an output value closer to d. */ + b = lshift(b, 1); + if (!b) + goto nomem2; + j1 = cmp(b, s); + if (j1 > 0) /* The even test (|| (j1 == 0 && (digit & 1))) is not here because it messes up odd base output + * such as 3.5 in base 3. */ + digit++; + } + done = JS_TRUE; + } else if (j1 > 0) { + digit++; + done = JS_TRUE; + } + JS_ASSERT(digit < (uint32)base); + *p++ = BASEDIGIT(digit); + } while (!done); + Bfree(b); + Bfree(s); + if (mlo != mhi) + Bfree(mlo); + Bfree(mhi); + } + JS_ASSERT(p < buffer + DTOBASESTR_BUFFER_SIZE); + *p = '\0'; + RELEASE_DTOA_LOCK(); + } + return buffer; +} Index: ossp-pkg/js/src/jsdtoa.c RCS File: /v/ossp/cvs/ossp-pkg/js/src/jsdtoa.c,v rcsdiff -q -kk '-r1.1' '-r1.1.1.1' -u '/v/ossp/cvs/ossp-pkg/js/src/jsdtoa.c,v' 2>/dev/null