/* ** OSSP uuid - Universally Unique Identifier ** Copyright (c) 2004-2008 Ralf S. Engelschall ** Copyright (c) 2004-2008 The OSSP Project ** ** This file is part of OSSP uuid, a library for the generation ** of UUIDs which can found at http://www.ossp.org/pkg/lib/uuid/ ** ** Permission to use, copy, modify, and distribute this software for ** any purpose with or without fee is hereby granted, provided that ** the above copyright notice and this permission notice appear in all ** copies. ** ** THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED ** WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ** MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHORS AND COPYRIGHT HOLDERS AND THEIR ** CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF ** USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ** OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ** OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF ** SUCH DAMAGE. ** ** uuid.c: library API implementation */ /* own headers (part 1/2) */ #include "uuid.h" #include "uuid_ac.h" /* system headers */ #include #include #include #include #include #include #include #include #include #include /* own headers (part 2/2) */ #include "uuid_vers.h" #include "uuid_md5.h" #include "uuid_sha1.h" #include "uuid_prng.h" #include "uuid_mac.h" #include "uuid_time.h" #include "uuid_ui64.h" #include "uuid_ui128.h" #include "uuid_str.h" #include "uuid_bm.h" #include "uuid_ac.h" /* maximum number of 100ns ticks of the actual resolution of system clock (which in our case is 1us (= 1000ns) because we use gettimeofday(2) */ #define UUIDS_PER_TICK 10 /* time offset between UUID and Unix Epoch time according to standards. (UUID UTC base time is October 15, 1582 Unix UTC base time is January 1, 1970) */ #define UUID_TIMEOFFSET "01B21DD213814000" /* IEEE 802 MAC address encoding/decoding bit fields */ #define IEEE_MAC_MCBIT BM_OCTET(0,0,0,0,0,0,0,1) #define IEEE_MAC_LOBIT BM_OCTET(0,0,0,0,0,0,1,0) /* IEEE 802 MAC address octet length */ #define IEEE_MAC_OCTETS 6 /* UUID binary representation according to UUID standards */ typedef struct { uuid_uint32_t time_low; /* bits 0-31 of time field */ uuid_uint16_t time_mid; /* bits 32-47 of time field */ uuid_uint16_t time_hi_and_version; /* bits 48-59 of time field plus 4 bit version */ uuid_uint8_t clock_seq_hi_and_reserved; /* bits 8-13 of clock sequence field plus 2 bit variant */ uuid_uint8_t clock_seq_low; /* bits 0-7 of clock sequence field */ uuid_uint8_t node[IEEE_MAC_OCTETS]; /* bits 0-47 of node MAC address */ } uuid_obj_t; /* abstract data type (ADT) of API */ struct uuid_st { uuid_obj_t obj; /* inlined UUID object */ prng_t *prng; /* RPNG sub-object */ md5_t *md5; /* MD5 sub-object */ sha1_t *sha1; /* SHA-1 sub-object */ uuid_uint8_t mac[IEEE_MAC_OCTETS]; /* pre-determined MAC address */ struct timeval time_last; /* last retrieved timestamp */ unsigned long time_seq; /* last timestamp sequence counter */ }; /* create UUID object */ uuid_rc_t uuid_create(uuid_t **uuid) { uuid_t *obj; /* argument sanity check */ if (uuid == NULL) return UUID_RC_ARG; /* allocate UUID object */ if ((obj = (uuid_t *)malloc(sizeof(uuid_t))) == NULL) return UUID_RC_MEM; /* create PRNG, MD5 and SHA1 sub-objects */ if (prng_create(&obj->prng) != PRNG_RC_OK) { free(obj); return UUID_RC_INT; } if (md5_create(&obj->md5) != MD5_RC_OK) { (void)prng_destroy(obj->prng); free(obj); return UUID_RC_INT; } if (sha1_create(&obj->sha1) != SHA1_RC_OK) { (void)md5_destroy(obj->md5); (void)prng_destroy(obj->prng); free(obj); return UUID_RC_INT; } /* set UUID object initially to "Nil UUID" */ if (uuid_load(obj, "nil") != UUID_RC_OK) { (void)sha1_destroy(obj->sha1); (void)md5_destroy(obj->md5); (void)prng_destroy(obj->prng); free(obj); return UUID_RC_INT; } /* resolve MAC address for insertion into node field of UUIDs */ if (!mac_address((unsigned char *)(obj->mac), sizeof(obj->mac))) { memset(obj->mac, 0, sizeof(obj->mac)); obj->mac[0] = BM_OCTET(1,0,0,0,0,0,0,0); } /* initialize time attributes */ obj->time_last.tv_sec = 0; obj->time_last.tv_usec = 0; obj->time_seq = 0; /* store result object */ *uuid = obj; return UUID_RC_OK; } /* destroy UUID object */ uuid_rc_t uuid_destroy(uuid_t *uuid) { /* argument sanity check */ if (uuid == NULL) return UUID_RC_ARG; /* destroy PRNG, MD5 and SHA-1 sub-objects */ (void)prng_destroy(uuid->prng); (void)md5_destroy(uuid->md5); (void)sha1_destroy(uuid->sha1); /* free UUID object */ free(uuid); return UUID_RC_OK; } /* clone UUID object */ uuid_rc_t uuid_clone(const uuid_t *uuid, uuid_t **clone) { uuid_t *obj; /* argument sanity check */ if (uuid == NULL || uuid_clone == NULL) return UUID_RC_ARG; /* allocate UUID object */ if ((obj = (uuid_t *)malloc(sizeof(uuid_t))) == NULL) return UUID_RC_MEM; /* clone entire internal state */ memcpy(obj, uuid, sizeof(uuid_t)); /* re-initialize with new PRNG, MD5 and SHA1 sub-objects */ if (prng_create(&obj->prng) != PRNG_RC_OK) { free(obj); return UUID_RC_INT; } if (md5_create(&obj->md5) != MD5_RC_OK) { (void)prng_destroy(obj->prng); free(obj); return UUID_RC_INT; } if (sha1_create(&obj->sha1) != SHA1_RC_OK) { (void)md5_destroy(obj->md5); (void)prng_destroy(obj->prng); free(obj); return UUID_RC_INT; } /* store result object */ *clone = obj; return UUID_RC_OK; } /* check whether UUID object represents "Nil UUID" */ uuid_rc_t uuid_isnil(const uuid_t *uuid, int *result) { const unsigned char *ucp; int i; /* sanity check argument(s) */ if (uuid == NULL || result == NULL) return UUID_RC_ARG; /* a "Nil UUID" is defined as all octets zero, so check for this case */ *result = UUID_TRUE; for (i = 0, ucp = (unsigned char *)&(uuid->obj); i < UUID_LEN_BIN; i++) { if (*ucp++ != (unsigned char)'\0') { *result = UUID_FALSE; break; } } return UUID_RC_OK; } /* compare UUID objects */ uuid_rc_t uuid_compare(const uuid_t *uuid1, const uuid_t *uuid2, int *result) { int r; /* argument sanity check */ if (result == NULL) return UUID_RC_ARG; /* convenience macro for setting result */ #define RESULT(r) \ /*lint -save -e801 -e717*/ \ do { \ *result = (r); \ goto result_exit; \ } while (0) \ /*lint -restore*/ /* special cases: NULL or equal UUIDs */ if (uuid1 == uuid2) RESULT(0); if (uuid1 == NULL && uuid2 == NULL) RESULT(0); if (uuid1 == NULL) RESULT((uuid_isnil(uuid2, &r) == UUID_RC_OK ? r : 0) ? 0 : -1); if (uuid2 == NULL) RESULT((uuid_isnil(uuid1, &r) == UUID_RC_OK ? r : 0) ? 0 : 1); /* standard cases: regular different UUIDs */ if (uuid1->obj.time_low != uuid2->obj.time_low) RESULT((uuid1->obj.time_low < uuid2->obj.time_low) ? -1 : 1); if ((r = (int)uuid1->obj.time_mid - (int)uuid2->obj.time_mid) != 0) RESULT((r < 0) ? -1 : 1); if ((r = (int)uuid1->obj.time_hi_and_version - (int)uuid2->obj.time_hi_and_version) != 0) RESULT((r < 0) ? -1 : 1); if ((r = (int)uuid1->obj.clock_seq_hi_and_reserved - (int)uuid2->obj.clock_seq_hi_and_reserved) != 0) RESULT((r < 0) ? -1 : 1); if ((r = (int)uuid1->obj.clock_seq_low - (int)uuid2->obj.clock_seq_low) != 0) RESULT((r < 0) ? -1 : 1); if ((r = memcmp(uuid1->obj.node, uuid2->obj.node, sizeof(uuid1->obj.node))) != 0) RESULT((r < 0) ? -1 : 1); /* default case: the keys are equal */ *result = 0; result_exit: return UUID_RC_OK; } /* INTERNAL: unpack UUID binary presentation into UUID object (allows in-place operation for internal efficiency!) */ static uuid_rc_t uuid_import_bin(uuid_t *uuid, const void *data_ptr, size_t data_len) { const uuid_uint8_t *in; uuid_uint32_t tmp32; uuid_uint16_t tmp16; unsigned int i; /* sanity check argument(s) */ if (uuid == NULL || data_ptr == NULL || data_len < UUID_LEN_BIN) return UUID_RC_ARG; /* treat input data buffer as octet stream */ in = (const uuid_uint8_t *)data_ptr; /* unpack "time_low" field */ tmp32 = (uuid_uint32_t)(*in++); tmp32 = (tmp32 << 8) | (uuid_uint32_t)(*in++); tmp32 = (tmp32 << 8) | (uuid_uint32_t)(*in++); tmp32 = (tmp32 << 8) | (uuid_uint32_t)(*in++); uuid->obj.time_low = tmp32; /* unpack "time_mid" field */ tmp16 = (uuid_uint16_t)(*in++); tmp16 = (uuid_uint16_t)(tmp16 << 8) | (uuid_uint16_t)(*in++); uuid->obj.time_mid = tmp16; /* unpack "time_hi_and_version" field */ tmp16 = (uuid_uint16_t)*in++; tmp16 = (uuid_uint16_t)(tmp16 << 8) | (uuid_uint16_t)(*in++); uuid->obj.time_hi_and_version = tmp16; /* unpack "clock_seq_hi_and_reserved" field */ uuid->obj.clock_seq_hi_and_reserved = *in++; /* unpack "clock_seq_low" field */ uuid->obj.clock_seq_low = *in++; /* unpack "node" field */ for (i = 0; i < (unsigned int)sizeof(uuid->obj.node); i++) uuid->obj.node[i] = *in++; return UUID_RC_OK; } /* INTERNAL: pack UUID object into binary representation (allows in-place operation for internal efficiency!) */ static uuid_rc_t uuid_export_bin(const uuid_t *uuid, void *_data_ptr, size_t *data_len) { uuid_uint8_t **data_ptr; uuid_uint8_t *out; uuid_uint32_t tmp32; uuid_uint16_t tmp16; unsigned int i; /* cast generic data pointer to particular pointer to pointer type */ data_ptr = (uuid_uint8_t **)_data_ptr; /* sanity check argument(s) */ if (uuid == NULL || data_ptr == NULL) return UUID_RC_ARG; /* optionally allocate octet data buffer */ if (*data_ptr == NULL) { if ((*data_ptr = (uuid_uint8_t *)malloc(sizeof(uuid_t))) == NULL) return UUID_RC_MEM; if (data_len != NULL) *data_len = UUID_LEN_BIN; } else { if (data_len == NULL) return UUID_RC_ARG; if (*data_len < UUID_LEN_BIN) return UUID_RC_MEM; *data_len = UUID_LEN_BIN; } /* treat output data buffer as octet stream */ out = *data_ptr; /* pack "time_low" field */ tmp32 = uuid->obj.time_low; out[3] = (uuid_uint8_t)(tmp32 & 0xff); tmp32 >>= 8; out[2] = (uuid_uint8_t)(tmp32 & 0xff); tmp32 >>= 8; out[1] = (uuid_uint8_t)(tmp32 & 0xff); tmp32 >>= 8; out[0] = (uuid_uint8_t)(tmp32 & 0xff); /* pack "time_mid" field */ tmp16 = uuid->obj.time_mid; out[5] = (uuid_uint8_t)(tmp16 & 0xff); tmp16 >>= 8; out[4] = (uuid_uint8_t)(tmp16 & 0xff); /* pack "time_hi_and_version" field */ tmp16 = uuid->obj.time_hi_and_version; out[7] = (uuid_uint8_t)(tmp16 & 0xff); tmp16 >>= 8; out[6] = (uuid_uint8_t)(tmp16 & 0xff); /* pack "clock_seq_hi_and_reserved" field */ out[8] = uuid->obj.clock_seq_hi_and_reserved; /* pack "clock_seq_low" field */ out[9] = uuid->obj.clock_seq_low; /* pack "node" field */ for (i = 0; i < (unsigned int)sizeof(uuid->obj.node); i++) out[10+i] = uuid->obj.node[i]; return UUID_RC_OK; } /* INTERNAL: check for valid UUID string representation syntax */ static int uuid_isstr(const char *str, size_t str_len) { int i; const char *cp; /* example reference: f81d4fae-7dec-11d0-a765-00a0c91e6bf6 012345678901234567890123456789012345 0 1 2 3 */ if (str == NULL) return UUID_FALSE; if (str_len == 0) str_len = strlen(str); if (str_len < UUID_LEN_STR) return UUID_FALSE; for (i = 0, cp = str; i < UUID_LEN_STR; i++, cp++) { if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) { if (*cp == '-') continue; else return UUID_FALSE; } if (!isxdigit((int)(*cp))) return UUID_FALSE; } return UUID_TRUE; } /* INTERNAL: import UUID object from string representation */ static uuid_rc_t uuid_import_str(uuid_t *uuid, const void *data_ptr, size_t data_len) { uuid_uint16_t tmp16; const char *cp; char hexbuf[3]; const char *str; unsigned int i; /* sanity check argument(s) */ if (uuid == NULL || data_ptr == NULL || data_len < UUID_LEN_STR) return UUID_RC_ARG; /* check for correct UUID string representation syntax */ str = (const char *)data_ptr; if (!uuid_isstr(str, 0)) return UUID_RC_ARG; /* parse hex values of "time" parts */ uuid->obj.time_low = (uuid_uint32_t)strtoul(str, NULL, 16); uuid->obj.time_mid = (uuid_uint16_t)strtoul(str+9, NULL, 16); uuid->obj.time_hi_and_version = (uuid_uint16_t)strtoul(str+14, NULL, 16); /* parse hex values of "clock" parts */ tmp16 = (uuid_uint16_t)strtoul(str+19, NULL, 16); uuid->obj.clock_seq_low = (uuid_uint8_t)(tmp16 & 0xff); tmp16 >>= 8; uuid->obj.clock_seq_hi_and_reserved = (uuid_uint8_t)(tmp16 & 0xff); /* parse hex values of "node" part */ cp = str+24; hexbuf[2] = '\0'; for (i = 0; i < (unsigned int)sizeof(uuid->obj.node); i++) { hexbuf[0] = *cp++; hexbuf[1] = *cp++; uuid->obj.node[i] = (uuid_uint8_t)strtoul(hexbuf, NULL, 16); } return UUID_RC_OK; } /* INTERNAL: import UUID object from single integer value representation */ static uuid_rc_t uuid_import_siv(uuid_t *uuid, const void *data_ptr, size_t data_len) { const char *str; uuid_uint8_t tmp_bin[UUID_LEN_BIN]; ui128_t ui, ui2; uuid_rc_t rc; int i; /* sanity check argument(s) */ if (uuid == NULL || data_ptr == NULL || data_len < 1) return UUID_RC_ARG; /* check for correct UUID single integer value syntax */ str = (const char *)data_ptr; for (i = 0; i < (int)data_len; i++) if (!isdigit((int)str[i])) return UUID_RC_ARG; /* parse single integer value representation (SIV) */ ui = ui128_s2i(str, NULL, 10); /* import octets into UUID binary representation */ for (i = 0; i < UUID_LEN_BIN; i++) { ui = ui128_rol(ui, 8, &ui2); tmp_bin[i] = (uuid_uint8_t)(ui128_i2n(ui2) & 0xff); } /* import into internal UUID representation */ if ((rc = uuid_import(uuid, UUID_FMT_BIN, (void *)&tmp_bin, UUID_LEN_BIN)) != UUID_RC_OK) return rc; return UUID_RC_OK; } /* INTERNAL: export UUID object to string representation */ static uuid_rc_t uuid_export_str(const uuid_t *uuid, void *_data_ptr, size_t *data_len) { char **data_ptr; char *data_buf; /* cast generic data pointer to particular pointer to pointer type */ data_ptr = (char **)_data_ptr; /* sanity check argument(s) */ if (uuid == NULL || data_ptr == NULL) return UUID_RC_ARG; /* determine output buffer */ if (*data_ptr == NULL) { if ((data_buf = (char *)malloc(UUID_LEN_STR+1)) == NULL) return UUID_RC_MEM; if (data_len != NULL) *data_len = UUID_LEN_STR+1; } else { data_buf = (char *)(*data_ptr); if (data_len == NULL) return UUID_RC_ARG; if (*data_len < UUID_LEN_STR+1) return UUID_RC_MEM; *data_len = UUID_LEN_STR+1; } /* format UUID into string representation */ if (str_snprintf(data_buf, UUID_LEN_STR+1, "%08lx-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x", (unsigned long)uuid->obj.time_low, (unsigned int)uuid->obj.time_mid, (unsigned int)uuid->obj.time_hi_and_version, (unsigned int)uuid->obj.clock_seq_hi_and_reserved, (unsigned int)uuid->obj.clock_seq_low, (unsigned int)uuid->obj.node[0], (unsigned int)uuid->obj.node[1], (unsigned int)uuid->obj.node[2], (unsigned int)uuid->obj.node[3], (unsigned int)uuid->obj.node[4], (unsigned int)uuid->obj.node[5]) != UUID_LEN_STR) { if (*data_ptr == NULL) free(data_buf); return UUID_RC_INT; } /* pass back new buffer if locally allocated */ if (*data_ptr == NULL) *data_ptr = data_buf; return UUID_RC_OK; } /* INTERNAL: export UUID object to single integer value representation */ static uuid_rc_t uuid_export_siv(const uuid_t *uuid, void *_data_ptr, size_t *data_len) { char **data_ptr; char *data_buf; void *tmp_ptr; size_t tmp_len; uuid_uint8_t tmp_bin[UUID_LEN_BIN]; ui128_t ui, ui2; uuid_rc_t rc; int i; /* cast generic data pointer to particular pointer to pointer type */ data_ptr = (char **)_data_ptr; /* sanity check argument(s) */ if (uuid == NULL || data_ptr == NULL) return UUID_RC_ARG; /* determine output buffer */ if (*data_ptr == NULL) { if ((data_buf = (char *)malloc(UUID_LEN_SIV+1)) == NULL) return UUID_RC_MEM; if (data_len != NULL) *data_len = UUID_LEN_SIV+1; } else { data_buf = (char *)(*data_ptr); if (data_len == NULL) return UUID_RC_ARG; if (*data_len < UUID_LEN_SIV+1) return UUID_RC_MEM; *data_len = UUID_LEN_SIV+1; } /* export into UUID binary representation */ tmp_ptr = (void *)&tmp_bin; tmp_len = sizeof(tmp_bin); if ((rc = uuid_export(uuid, UUID_FMT_BIN, &tmp_ptr, &tmp_len)) != UUID_RC_OK) { if (*data_ptr == NULL) free(data_buf); return rc; } /* import from UUID binary representation */ ui = ui128_zero(); for (i = 0; i < UUID_LEN_BIN; i++) { ui2 = ui128_n2i((unsigned long)tmp_bin[i]); ui = ui128_rol(ui, 8, NULL); ui = ui128_or(ui, ui2); } /* format into single integer value representation */ (void)ui128_i2s(ui, data_buf, UUID_LEN_SIV+1, 10); /* pass back new buffer if locally allocated */ if (*data_ptr == NULL) *data_ptr = data_buf; return UUID_RC_OK; } /* decoding tables */ static struct { uuid_uint8_t num; const char *desc; } uuid_dectab_variant[] = { { (uuid_uint8_t)BM_OCTET(0,0,0,0,0,0,0,0), "reserved (NCS backward compatible)" }, { (uuid_uint8_t)BM_OCTET(1,0,0,0,0,0,0,0), "DCE 1.1, ISO/IEC 11578:1996" }, { (uuid_uint8_t)BM_OCTET(1,1,0,0,0,0,0,0), "reserved (Microsoft GUID)" }, { (uuid_uint8_t)BM_OCTET(1,1,1,0,0,0,0,0), "reserved (future use)" } }; static struct { int num; const char *desc; } uuid_dectab_version[] = { { 1, "time and node based" }, { 3, "name based, MD5" }, { 4, "random data based" }, { 5, "name based, SHA-1" } }; /* INTERNAL: dump UUID object as descriptive text */ static uuid_rc_t uuid_export_txt(const uuid_t *uuid, void *_data_ptr, size_t *data_len) { char **data_ptr; uuid_rc_t rc; char **out; char *out_ptr; size_t out_len; const char *version; const char *variant; char *content; int isnil; uuid_uint8_t tmp8; uuid_uint16_t tmp16; uuid_uint32_t tmp32; uuid_uint8_t tmp_bin[UUID_LEN_BIN]; char tmp_str[UUID_LEN_STR+1]; char tmp_siv[UUID_LEN_SIV+1]; void *tmp_ptr; size_t tmp_len; ui64_t t; ui64_t t_offset; int t_nsec; int t_usec; time_t t_sec; char t_buf[19+1]; /* YYYY-MM-DD HH:MM:SS */ struct tm *tm; int i; /* cast generic data pointer to particular pointer to pointer type */ data_ptr = (char **)_data_ptr; /* sanity check argument(s) */ if (uuid == NULL || data_ptr == NULL) return UUID_RC_ARG; /* initialize output buffer */ out_ptr = NULL; out = &out_ptr; /* check for special case of "Nil UUID" */ if ((rc = uuid_isnil(uuid, &isnil)) != UUID_RC_OK) return rc; /* decode into various representations */ tmp_ptr = (void *)&tmp_str; tmp_len = sizeof(tmp_str); if ((rc = uuid_export(uuid, UUID_FMT_STR, &tmp_ptr, &tmp_len)) != UUID_RC_OK) return rc; tmp_ptr = (void *)&tmp_siv; tmp_len = sizeof(tmp_siv); if ((rc = uuid_export(uuid, UUID_FMT_SIV, &tmp_ptr, &tmp_len)) != UUID_RC_OK) return rc; (void)str_rsprintf(out, "encode: STR: %s\n", tmp_str); (void)str_rsprintf(out, " SIV: %s\n", tmp_siv); /* decode UUID variant */ tmp8 = uuid->obj.clock_seq_hi_and_reserved; if (isnil) variant = "n.a."; else { variant = "unknown"; for (i = 7; i >= 0; i--) { if ((tmp8 & (uuid_uint8_t)BM_BIT(i,1)) == 0) { tmp8 &= ~(uuid_uint8_t)BM_MASK(i,0); break; } } for (i = 0; i < (int)(sizeof(uuid_dectab_variant)/sizeof(uuid_dectab_variant[0])); i++) { if (uuid_dectab_variant[i].num == tmp8) { variant = uuid_dectab_variant[i].desc; break; } } } (void)str_rsprintf(out, "decode: variant: %s\n", variant); /* decode UUID version */ tmp16 = (BM_SHR(uuid->obj.time_hi_and_version, 12) & (uuid_uint16_t)BM_MASK(3,0)); if (isnil) version = "n.a."; else { version = "unknown"; for (i = 0; i < (int)(sizeof(uuid_dectab_version)/sizeof(uuid_dectab_version[0])); i++) { if (uuid_dectab_version[i].num == (int)tmp16) { version = uuid_dectab_version[i].desc; break; } } } str_rsprintf(out, " version: %d (%s)\n", (int)tmp16, version); /* * decode UUID content */ if (tmp8 == BM_OCTET(1,0,0,0,0,0,0,0) && tmp16 == 1) { /* decode DCE 1.1 version 1 UUID */ /* decode system time */ t = ui64_rol(ui64_n2i((unsigned long)(uuid->obj.time_hi_and_version & BM_MASK(11,0))), 48, NULL), t = ui64_or(t, ui64_rol(ui64_n2i((unsigned long)(uuid->obj.time_mid)), 32, NULL)); t = ui64_or(t, ui64_n2i((unsigned long)(uuid->obj.time_low))); t_offset = ui64_s2i(UUID_TIMEOFFSET, NULL, 16); t = ui64_sub(t, t_offset, NULL); t = ui64_divn(t, 10, &t_nsec); t = ui64_divn(t, 1000000, &t_usec); t_sec = (time_t)ui64_i2n(t); tm = gmtime(&t_sec); (void)strftime(t_buf, sizeof(t_buf), "%Y-%m-%d %H:%M:%S", tm); (void)str_rsprintf(out, " content: time: %s.%06d.%d UTC\n", t_buf, t_usec, t_nsec); /* decode clock sequence */ tmp32 = ((uuid->obj.clock_seq_hi_and_reserved & BM_MASK(5,0)) << 8) + uuid->obj.clock_seq_low; (void)str_rsprintf(out, " clock: %ld (usually random)\n", (long)tmp32); /* decode node MAC address */ (void)str_rsprintf(out, " node: %02x:%02x:%02x:%02x:%02x:%02x (%s %s)\n", (unsigned int)uuid->obj.node[0], (unsigned int)uuid->obj.node[1], (unsigned int)uuid->obj.node[2], (unsigned int)uuid->obj.node[3], (unsigned int)uuid->obj.node[4], (unsigned int)uuid->obj.node[5], (uuid->obj.node[0] & IEEE_MAC_LOBIT ? "local" : "global"), (uuid->obj.node[0] & IEEE_MAC_MCBIT ? "multicast" : "unicast")); } else { /* decode anything else as hexadecimal byte-string only */ /* determine annotational hint */ content = "not decipherable: unknown UUID version"; if (isnil) content = "special case: DCE 1.1 Nil UUID"; else if (tmp16 == 3) content = "not decipherable: MD5 message digest only"; else if (tmp16 == 4) content = "no semantics: random data only"; else if (tmp16 == 5) content = "not decipherable: truncated SHA-1 message digest only"; /* pack UUID into binary representation */ tmp_ptr = (void *)&tmp_bin; tmp_len = sizeof(tmp_bin); if ((rc = uuid_export(uuid, UUID_FMT_BIN, &tmp_ptr, &tmp_len)) != UUID_RC_OK) return rc; /* mask out version and variant parts */ tmp_bin[6] &= BM_MASK(3,0); tmp_bin[8] &= BM_MASK(5,0); /* dump as colon-seperated hexadecimal byte-string */ (void)str_rsprintf(out, " content: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n" " (%s)\n", (unsigned int)tmp_bin[0], (unsigned int)tmp_bin[1], (unsigned int)tmp_bin[2], (unsigned int)tmp_bin[3], (unsigned int)tmp_bin[4], (unsigned int)tmp_bin[5], (unsigned int)tmp_bin[6], (unsigned int)tmp_bin[7], (unsigned int)tmp_bin[8], (unsigned int)tmp_bin[9], (unsigned int)tmp_bin[10], (unsigned int)tmp_bin[11], (unsigned int)tmp_bin[12], (unsigned int)tmp_bin[13], (unsigned int)tmp_bin[14], (unsigned int)tmp_bin[15], content); } /* provide result */ out_len = strlen(out_ptr)+1; if (*data_ptr == NULL) { *data_ptr = (void *)out_ptr; if (data_len != NULL) *data_len = out_len; } else { if (data_len == NULL) return UUID_RC_ARG; if (*data_len < out_len) return UUID_RC_MEM; memcpy(*data_ptr, out_ptr, out_len); } return UUID_RC_OK; } /* UUID importing */ uuid_rc_t uuid_import(uuid_t *uuid, uuid_fmt_t fmt, const void *data_ptr, size_t data_len) { uuid_rc_t rc; /* sanity check argument(s) */ if (uuid == NULL || data_ptr == NULL) return UUID_RC_ARG; /* dispatch into format-specific functions */ switch (fmt) { case UUID_FMT_BIN: rc = uuid_import_bin(uuid, data_ptr, data_len); break; case UUID_FMT_STR: rc = uuid_import_str(uuid, data_ptr, data_len); break; case UUID_FMT_SIV: rc = uuid_import_siv(uuid, data_ptr, data_len); break; case UUID_FMT_TXT: rc = UUID_RC_IMP; /* not implemented */ break; default: rc = UUID_RC_ARG; } return rc; } /* UUID exporting */ uuid_rc_t uuid_export(const uuid_t *uuid, uuid_fmt_t fmt, void *data_ptr, size_t *data_len) { uuid_rc_t rc; /* sanity check argument(s) */ if (uuid == NULL || data_ptr == NULL) return UUID_RC_ARG; /* dispatch into format-specific functions */ switch (fmt) { case UUID_FMT_BIN: rc = uuid_export_bin(uuid, data_ptr, data_len); break; case UUID_FMT_STR: rc = uuid_export_str(uuid, data_ptr, data_len); break; case UUID_FMT_SIV: rc = uuid_export_siv(uuid, data_ptr, data_len); break; case UUID_FMT_TXT: rc = uuid_export_txt(uuid, data_ptr, data_len); break; default: rc = UUID_RC_ARG; } return rc; } /* INTERNAL: brand UUID with version and variant */ static void uuid_brand(uuid_t *uuid, unsigned int version) { /* set version (as given) */ uuid->obj.time_hi_and_version &= BM_MASK(11,0); uuid->obj.time_hi_and_version |= (uuid_uint16_t)BM_SHL(version, 12); /* set variant (always DCE 1.1 only) */ uuid->obj.clock_seq_hi_and_reserved &= BM_MASK(5,0); uuid->obj.clock_seq_hi_and_reserved |= BM_SHL(0x02, 6); return; } /* INTERNAL: generate UUID version 1: time, clock and node based */ static uuid_rc_t uuid_make_v1(uuid_t *uuid, unsigned int mode, va_list ap) { struct timeval time_now; ui64_t t; ui64_t offset; ui64_t ov; uuid_uint16_t clck; /* * GENERATE TIME */ /* determine current system time and sequence counter */ for (;;) { /* determine current system time */ if (time_gettimeofday(&time_now) == -1) return UUID_RC_SYS; /* check whether system time changed since last retrieve */ if (!( time_now.tv_sec == uuid->time_last.tv_sec && time_now.tv_usec == uuid->time_last.tv_usec)) { /* reset time sequence counter and continue */ uuid->time_seq = 0; break; } /* until we are out of UUIDs per tick, increment the time/tick sequence counter and continue */ if (uuid->time_seq < UUIDS_PER_TICK) { uuid->time_seq++; break; } /* stall the UUID generation until the system clock (which has a gettimeofday(2) resolution of 1us) catches up */ time_usleep(1); } /* convert from timeval (sec,usec) to OSSP ui64 (100*nsec) format */ t = ui64_n2i((unsigned long)time_now.tv_sec); t = ui64_muln(t, 1000000, NULL); t = ui64_addn(t, (int)time_now.tv_usec, NULL); t = ui64_muln(t, 10, NULL); /* adjust for offset between UUID and Unix Epoch time */ offset = ui64_s2i(UUID_TIMEOFFSET, NULL, 16); t = ui64_add(t, offset, NULL); /* compensate for low resolution system clock by adding the time/tick sequence counter */ if (uuid->time_seq > 0) t = ui64_addn(t, (int)uuid->time_seq, NULL); /* store the 60 LSB of the time in the UUID */ t = ui64_rol(t, 16, &ov); uuid->obj.time_hi_and_version = (uuid_uint16_t)(ui64_i2n(ov) & 0x00000fff); /* 12 of 16 bit only! */ t = ui64_rol(t, 16, &ov); uuid->obj.time_mid = (uuid_uint16_t)(ui64_i2n(ov) & 0x0000ffff); /* all 16 bit */ t = ui64_rol(t, 32, &ov); uuid->obj.time_low = (uuid_uint32_t)(ui64_i2n(ov) & 0xffffffff); /* all 32 bit */ /* * GENERATE CLOCK */ /* retrieve current clock sequence */ clck = ((uuid->obj.clock_seq_hi_and_reserved & BM_MASK(5,0)) << 8) + uuid->obj.clock_seq_low; /* generate new random clock sequence (initially or if the time has stepped backwards) or else just increase it */ if ( clck == 0 || ( time_now.tv_sec < uuid->time_last.tv_sec || ( time_now.tv_sec == uuid->time_last.tv_sec && time_now.tv_usec < uuid->time_last.tv_usec))) { if (prng_data(uuid->prng, (void *)&clck, sizeof(clck)) != PRNG_RC_OK) return UUID_RC_INT; } else clck++; clck %= BM_POW2(14); /* store back new clock sequence */ uuid->obj.clock_seq_hi_and_reserved = (uuid->obj.clock_seq_hi_and_reserved & BM_MASK(7,6)) | (uuid_uint8_t)((clck >> 8) & 0xff); uuid->obj.clock_seq_low = (uuid_uint8_t)(clck & 0xff); /* * GENERATE NODE */ if ((mode & UUID_MAKE_MC) || (uuid->mac[0] & BM_OCTET(1,0,0,0,0,0,0,0))) { /* generate random IEEE 802 local multicast MAC address */ if (prng_data(uuid->prng, (void *)&(uuid->obj.node), sizeof(uuid->obj.node)) != PRNG_RC_OK) return UUID_RC_INT; uuid->obj.node[0] |= IEEE_MAC_MCBIT; uuid->obj.node[0] |= IEEE_MAC_LOBIT; } else { /* use real regular MAC address */ memcpy(uuid->obj.node, uuid->mac, sizeof(uuid->mac)); } /* * FINISH */ /* remember current system time for next iteration */ uuid->time_last.tv_sec = time_now.tv_sec; uuid->time_last.tv_usec = time_now.tv_usec; /* brand with version and variant */ uuid_brand(uuid, 1); return UUID_RC_OK; } /* INTERNAL: pre-defined UUID values. (defined as network byte ordered octet stream) */ #define UUID_MAKE(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16) \ { (uuid_uint8_t)(a1), (uuid_uint8_t)(a2), (uuid_uint8_t)(a3), (uuid_uint8_t)(a4), \ (uuid_uint8_t)(a5), (uuid_uint8_t)(a6), (uuid_uint8_t)(a7), (uuid_uint8_t)(a8), \ (uuid_uint8_t)(a9), (uuid_uint8_t)(a10), (uuid_uint8_t)(a11), (uuid_uint8_t)(a12), \ (uuid_uint8_t)(a13), (uuid_uint8_t)(a14), (uuid_uint8_t)(a15), (uuid_uint8_t)(a16) } static struct { char *name; uuid_uint8_t uuid[UUID_LEN_BIN]; } uuid_value_table[] = { { "nil", /* 00000000-0000-0000-0000-000000000000 ("Nil UUID") */ UUID_MAKE(0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00) }, { "ns:DNS", /* 6ba7b810-9dad-11d1-80b4-00c04fd430c8 (see RFC 4122) */ UUID_MAKE(0x6b,0xa7,0xb8,0x10,0x9d,0xad,0x11,0xd1,0x80,0xb4,0x00,0xc0,0x4f,0xd4,0x30,0xc8) }, { "ns:URL", /* 6ba7b811-9dad-11d1-80b4-00c04fd430c8 (see RFC 4122) */ UUID_MAKE(0x6b,0xa7,0xb8,0x11,0x9d,0xad,0x11,0xd1,0x80,0xb4,0x00,0xc0,0x4f,0xd4,0x30,0xc8) }, { "ns:OID", /* 6ba7b812-9dad-11d1-80b4-00c04fd430c8 (see RFC 4122) */ UUID_MAKE(0x6b,0xa7,0xb8,0x12,0x9d,0xad,0x11,0xd1,0x80,0xb4,0x00,0xc0,0x4f,0xd4,0x30,0xc8) }, { "ns:X500", /* 6ba7b814-9dad-11d1-80b4-00c04fd430c8 (see RFC 4122) */ UUID_MAKE(0x6b,0xa7,0xb8,0x14,0x9d,0xad,0x11,0xd1,0x80,0xb4,0x00,0xc0,0x4f,0xd4,0x30,0xc8) } }; /* load UUID object with pre-defined value */ uuid_rc_t uuid_load(uuid_t *uuid, const char *name) { uuid_uint8_t *uuid_octets; uuid_rc_t rc; unsigned int i; /* sanity check argument(s) */ if (uuid == NULL || name == NULL) return UUID_RC_ARG; /* search for UUID in table */ uuid_octets = NULL; for (i = 0; i < (unsigned int)sizeof(uuid_value_table)/sizeof(uuid_value_table[0]); i++) { if (strcmp(uuid_value_table[i].name, name) == 0) { uuid_octets = uuid_value_table[i].uuid; break; } } if (uuid_octets == NULL) return UUID_RC_ARG; /* import value into UUID object */ if ((rc = uuid_import(uuid, UUID_FMT_BIN, uuid_octets, UUID_LEN_BIN)) != UUID_RC_OK) return rc; return UUID_RC_OK; } /* INTERNAL: generate UUID version 3: name based with MD5 */ static uuid_rc_t uuid_make_v3(uuid_t *uuid, unsigned int mode, va_list ap) { char *str; uuid_t *uuid_ns; uuid_uint8_t uuid_buf[UUID_LEN_BIN]; void *uuid_ptr; size_t uuid_len; uuid_rc_t rc; /* determine namespace UUID and name string arguments */ if ((uuid_ns = (uuid_t *)va_arg(ap, void *)) == NULL) return UUID_RC_ARG; if ((str = (char *)va_arg(ap, char *)) == NULL) return UUID_RC_ARG; /* initialize MD5 context */ if (md5_init(uuid->md5) != MD5_RC_OK) return UUID_RC_MEM; /* load the namespace UUID into MD5 context */ uuid_ptr = (void *)&uuid_buf; uuid_len = sizeof(uuid_buf); if ((rc = uuid_export(uuid_ns, UUID_FMT_BIN, &uuid_ptr, &uuid_len)) != UUID_RC_OK) return rc; if (md5_update(uuid->md5, uuid_buf, uuid_len) != MD5_RC_OK) return UUID_RC_INT; /* load the argument name string into MD5 context */ if (md5_update(uuid->md5, str, strlen(str)) != MD5_RC_OK) return UUID_RC_INT; /* store MD5 result into UUID (requires MD5_LEN_BIN space, UUID_LEN_BIN space is available, and both are equal in size, so we are safe!) */ uuid_ptr = (void *)&(uuid->obj); if (md5_store(uuid->md5, &uuid_ptr, NULL) != MD5_RC_OK) return UUID_RC_INT; /* fulfill requirement of standard and convert UUID data into local/host byte order (this uses fact that uuid_import_bin() is able to operate in-place!) */ if ((rc = uuid_import(uuid, UUID_FMT_BIN, (void *)&(uuid->obj), UUID_LEN_BIN)) != UUID_RC_OK) return rc; /* brand UUID with version and variant */ uuid_brand(uuid, 3); return UUID_RC_OK; } /* INTERNAL: generate UUID version 4: random number based */ static uuid_rc_t uuid_make_v4(uuid_t *uuid, unsigned int mode, va_list ap) { /* fill UUID with random data */ if (prng_data(uuid->prng, (void *)&(uuid->obj), sizeof(uuid->obj)) != PRNG_RC_OK) return UUID_RC_INT; /* brand UUID with version and variant */ uuid_brand(uuid, 4); return UUID_RC_OK; } /* INTERNAL: generate UUID version 5: name based with SHA-1 */ static uuid_rc_t uuid_make_v5(uuid_t *uuid, unsigned int mode, va_list ap) { char *str; uuid_t *uuid_ns; uuid_uint8_t uuid_buf[UUID_LEN_BIN]; void *uuid_ptr; size_t uuid_len; uuid_uint8_t sha1_buf[SHA1_LEN_BIN]; void *sha1_ptr; uuid_rc_t rc; /* determine namespace UUID and name string arguments */ if ((uuid_ns = (uuid_t *)va_arg(ap, void *)) == NULL) return UUID_RC_ARG; if ((str = (char *)va_arg(ap, char *)) == NULL) return UUID_RC_ARG; /* initialize SHA-1 context */ if (sha1_init(uuid->sha1) != SHA1_RC_OK) return UUID_RC_INT; /* load the namespace UUID into SHA-1 context */ uuid_ptr = (void *)&uuid_buf; uuid_len = sizeof(uuid_buf); if ((rc = uuid_export(uuid_ns, UUID_FMT_BIN, &uuid_ptr, &uuid_len)) != UUID_RC_OK) return rc; if (sha1_update(uuid->sha1, uuid_buf, uuid_len) != SHA1_RC_OK) return UUID_RC_INT; /* load the argument name string into SHA-1 context */ if (sha1_update(uuid->sha1, str, strlen(str)) != SHA1_RC_OK) return UUID_RC_INT; /* store SHA-1 result into UUID (requires SHA1_LEN_BIN space, but UUID_LEN_BIN space is available only, so use a temporary buffer to store SHA-1 results and then use lower part only according to standard */ sha1_ptr = (void *)sha1_buf; if (sha1_store(uuid->sha1, &sha1_ptr, NULL) != SHA1_RC_OK) return UUID_RC_INT; uuid_ptr = (void *)&(uuid->obj); memcpy(uuid_ptr, sha1_ptr, UUID_LEN_BIN); /* fulfill requirement of standard and convert UUID data into local/host byte order (this uses fact that uuid_import_bin() is able to operate in-place!) */ if ((rc = uuid_import(uuid, UUID_FMT_BIN, (void *)&(uuid->obj), UUID_LEN_BIN)) != UUID_RC_OK) return rc; /* brand UUID with version and variant */ uuid_brand(uuid, 5); return UUID_RC_OK; } /* generate UUID */ uuid_rc_t uuid_make(uuid_t *uuid, unsigned int mode, ...) { va_list ap; uuid_rc_t rc; /* sanity check argument(s) */ if (uuid == NULL) return UUID_RC_ARG; /* dispatch into version dependent generation functions */ va_start(ap, mode); if (mode & UUID_MAKE_V1) rc = uuid_make_v1(uuid, mode, ap); else if (mode & UUID_MAKE_V3) rc = uuid_make_v3(uuid, mode, ap); else if (mode & UUID_MAKE_V4) rc = uuid_make_v4(uuid, mode, ap); else if (mode & UUID_MAKE_V5) rc = uuid_make_v5(uuid, mode, ap); else rc = UUID_RC_ARG; va_end(ap); return rc; } /* translate UUID API error code into corresponding error string */ char *uuid_error(uuid_rc_t rc) { char *str; switch (rc) { case UUID_RC_OK: str = "everything ok"; break; case UUID_RC_ARG: str = "invalid argument"; break; case UUID_RC_MEM: str = "out of memory"; break; case UUID_RC_SYS: str = "system error"; break; case UUID_RC_INT: str = "internal error"; break; case UUID_RC_IMP: str = "not implemented"; break; default: str = NULL; break; } return str; } /* OSSP uuid version (link-time information) */ unsigned long uuid_version(void) { return (unsigned long)(_UUID_VERSION); }