
HP–UX Release 9.0 Networking
Performance Enhancements

We Go Fast With a Little Help From Your Apps

Rick Jones, Information Networks Division
Sandy Greer, Information Networks Division

With the release of HP–UX 9.0, HP 9000 systems truly enter the realm of
high–speed networking. The application of experience gained through

years of experimentation and prototyping have come together to produce
a networking offering that provides exceptional levels of throughput with
minimal CPU overhead. This level of performance is achieved through

close cooperation between the application and the transport.

HP–UX Release 9.0 Networking Performance Enhancements

2 Revision 1.1, 02/09/93, Copyright Hewlett–Packard Company

1 Introduction

This report is intended to give you a focused
look at the performance enhancements
introduced with HP–UX Release 9.0 and how
your application might use them. A compre-
hensive look at networking performance for
the HP–UX Release 9.0 and HP 9000 Sys-
tems in general is beyond the scope of this
report.

This report assumes that you are familiar
with the basics of BSD sockets programming
as well as the concepts of virtual memory,
and data caches.

These performance enhancements rely on
features offered by the NIO FDDI Product
(pn J2157A). Future link products may in-
clude features to support some, all, or none
of these enhancements.

Two performance enhancements were add-
ed to HP–UX Release 9.0. They are support
for Internet checksum offloading by network
interfaces, and copy avoidance for user data.
Checksum offloading is a feature of the at-
tached network interface(s) benefiting all
applications. Copy avoidance also relies on
the presence of a feature in the network in-
terface. Further, copy avoidance requires
assistance from the application.

The Copy Avoidance features, as implement-
ed in HP–UX Release 9.0, and the NIO FDDI
Network Interface, are geared to a ‘‘server
solution.” This is to say that it is most effec-
tive in a server environment, where data is
moved from one medium to another (eg
memory to network) without being manipu-
lated. This is described in greater detail in
Section 3.1.

In addition to presenting results, this report
will present techniques – in the form of C–
style code fragments – that will allow you to
code your own networking applications to

take advantage of the performance enhance-
ments described in this document.

For the first time in an HP–UX networking
brief, CPU utilization information will be pres-
ented along with the throughput numbers.
However, the specific techniques used to
measure this CPU utilization may not be
available to you as they are based on op-
tions not available with production kernels.

HP–UX Release 9.0 Networking Performance Enhancements

3Revision 1.1, 02/09/93, Copyright Hewlett–Packard Company

2 Checksum Offload

HP–UX Release 9.0 was modified to take
advantage of network interfaces offering In-
ternet checksum offloading. When a
connection runs over such an interface, the
Transport will let the interface calculate the
Internet checksum for inbound and outbound
packets.

Your applications do not need to be modified
to take advantage of checksum offload. This
feature is completely contained within the
Transport.

The NIO FDDI Network Interface Card (pn
J2157A) is the first network interface from
Hewlett–Packard to provide hardware sup-
port for TCP and UDP Internet checksums.
This support is bi–directional and takes place
within the card itself. It is a necessary first
step to providing complete copy avoidance.
(See Section 3)

It is not necessary that both sides of the con-
nection be running over NIO FDDI cards.
The feature is completely local to the card
and is indistinguishable on the wire from host
checksumming. So, you can migrate a server
solution from Ethernet (or 802.5) to FDDI
and see the server–side CPU utilization
gains – even if you leave your clients on the
Ethernet!

The loopback interface also offers checksum
offload. This is used when a connection goes
directly to the loopback interface using the
127.0.0.1 address, and not when using one
of the host’s other IP addresses (eg the con-
nected Ethernet). To insure that all your
loopback connections take advantage of
loopback checksum offload you should con-
figure host routes pointing at 127.0.0.1 for
each of your connected interfaces. See Ap-
pendix D for more information.

50

52

54

56

58

60

Card Checksum Host Checksum

Figure 1: Card vs. Host Checksums

Effect of Checksum Offload on TCP Stream Throughput
32KB Socket Buffers, 4KB Sends

Throughput (mb/s)

BETTER

HP–UX Release 9.0 Networking Performance Enhancements

4 Revision 1.1, 02/09/93, Copyright Hewlett–Packard Company

3 Copy Avoidance

One of the biggest bottlenecks to networking
performance is the copying and accessing of
the user’s data. In a classic (BSD) TCP im-
plementation, the user’s data is either moved
or examined three times. There is the copy
from user space into kernel space, the TCP
checksum calculation, and finally the move-
ment of the data between host memory and
the interface card.

If one can find ways to avoid copying data,
then it should be possible to greatly increase
the efficiency of sending or receiving data. In
the absence of other bottlenecks, one should
also see an increase in throughput.

There are many ways to avoid copying data.
The two which will be discussed in this docu-
ment are copy–on–write, and page
remapping. Briefly, copy–on–write is the set-
ting–up of a duplicate reference to a buffer. If

someone tries to write to that buffer while the
reference is active, a copy will be made.
Page remapping is the transfer of data from
one virtual address to another by swapping
their physical page mappings.

Figure 2 presents the results of two TCP uni-
directional stream tests between a pair of HP
9000 Series X30 class machines (a.k.a.
837/847/857). In one test, labeled ‘‘Copies,”
the only optimization present was Internet
checksum offload. In the other test, labeled
‘‘Copy Avoidance,” conditions were such that
the copying of data between user space and
kernel space could be forgone.

As Figure 2 shows, enabling the copy avoid-
ance features available with HP–UX Release
9.0 and NIO FDDI does indeed improve the
efficiency of networked data transfer.

0

10

20

30

40

50

60

70

Copy Avoidance Copies

Throughput Free Send CPU Free Receive CPU

Figure 2: Copies vs. No Copies

Effect of Copy Avoidance on TCP Stream Throughput
32KB Socket Buffers, 4KB Sends

(%) (%)(mb/s)

BETTER

HP–UX Release 9.0 Networking Performance Enhancements

5Revision 1.1, 02/09/93, Copyright Hewlett–Packard Company

Figure 2 shows a considerable improvement
in efficiency, but not a considerable increase
in throughput. This is the unfortunate result
of other bottlenecks in the systems under
test. These bottlenecks are the topic of cur-
rent research and development for future
releases and platforms.

A description of the application code
changes necessary for copy avoidance can
be found in Section 4.

HP–UX Release 9.0 Networking Performance Enhancements

6 Revision 1.1, 02/09/93, Copyright Hewlett–Packard Company

���

�

��

��

��

��

��

��

	�

�� �� ��
 ��� ��� ���� ���
 ����

Figure 3: Effect of Dirtiness on Send Performance

Number of Dirty Bytes in Send

Effect of Buffer Access on TCP Stream Send Performance
32KB Socket Buffers, 4KB Sends

Throughput
(mb/s)

Free Send CPU
(%)� �

Copies Copy Avoidance

3.1The Importance of Staying Clean
Earlier, we said that the HP–UX 9.0/NIO
FDDI copy avoidance features were ‘‘server
oriented.” This stems from their sensitivity to
the state of buffers in the processor’s data
cache. In the context of this discussion, the
terms ‘‘dirty” and ‘‘clean” will refer to the state
of the user’s buffers in the processor’s data
cache. To say that a location is dirty in
cache implies that the application has written
to that location. A location is clean in cache,
or ‘‘cache–clean,” if it has been read, but not
written. It is also possible for a location to be
marked as invalid.

Figure 3 shows the relationship between the
‘‘dirtiness” of the buffer being sent, and the
sending CPU utilization. For the copy avoid-
ance case, the throughput does not degrade
until CPU saturation is reached (somewhere
after 256 bytes with the processor mea-
sured). From that point on, the copy

avoidance case, and the default case per-
form similarly.

Figure 4 shows a similar relationship for the
receiving side.Again, the throughput holds
steady until CPU saturation is achieved.
However, in the receive case, notice that the
copy avoidance throughput stays above the
throughput in the copy case.

The difference in semantics between send-
ing and receiving data dictate different
implementations of copy avoidance. When
an application makes a call to send(2), it
must be able to assume that the data pres-
ented will be preserved after the syscall. The
copy avoidance mechanism used in this con-
text is copy–on–write. When an application
makes a call to recv(2) it expects the data in
its buffer will be replaced with new data. The
copy avoidance mechanism used in this con-
text is page remapping.

HP–UX Release 9.0 Networking Performance Enhancements

7Revision 1.1, 02/09/93, Copyright Hewlett–Packard Company

���

�

��

��

��

��

��

��

	�

�� �� ��
 ��� ��� ���� ���
 ����

Figure 4: Effect of Dirtiness on Receive Performance

Number of Dirty Bytes in Receive

Effect of Buffer Access on TCP Stream Receive Performance
32KB Socket Buffers, 4KB Receives

Throughput
(mb/s)

Free Receive CPU
(%)� �

Copies Copy Avoidance

When an application presents data in a
send(2) call that is dirty in the data cache, it
must be moved from the cache into memory
before the packet(s) can be sent. This is
called ‘‘flushing” the cache. However, when
an application presents a dirty buffer in a
recv(2) call, that data does not need to be
moved to memory because it is going to be
overwritten; instead, the dirty buffer is simply
marked as invalid. This is referred to as
‘‘purging’’ the cache. The replacing of data is
why receive copy avoidance is less sensitive
to buffer dirtiness than send copy avoidance.

HP–UX Release 9.0 Networking Performance Enhancements

8 Revision 1.1, 02/09/93, Copyright Hewlett–Packard Company

3.2Send Buffer Strategy
In Section 3.1, we saw the importance of
providing ‘‘clean” buffers to efficient send
performance. The point at which an applica-
tion touches a send buffer can have as
considerable an impact on performance. In
this section, we examine the effect that differ-
ent application buffering strategies can have
on that efficiency, with particular emphasis
on TCP bulk–data connections.

One common practice (among TCP bench-
marks at least) is to allocate a single buffer,
and then send that same buffer repeatedly.
On classic BSD TCP implementations, that
one buffer will be copied over and over into
buffers held by TCP. If a 32KB send socket
buffer is used, and a 4KB application send
buffer, then a maximum of 36KB of memory
will be used to hold data to be transferred
(32KB in the Transport, and 4KB in the ap-
plication)

By requesting send copy avoidance (See
Section 4), an application is advising the
Transport that it will try not to re–use that
buffer until the Transport is finished with it.
Given that advice, the Transport will employ
the copy–on–write optimization. If the ap-
plication does touch a buffer that is being
used by the Transport, everything will still
‘‘work,” but the application will force a copy of
the buffer and thus incur a performance pen-
alty. Those are the semantics of a
copy–on–write scheme.

Figure 5 shows how the number of applica-
tion buffers can affect TCP send
performance and efficiency when copy avoid-
ance is enabled. In this test, the application
opens a 32KB socket, and is making 4KB
sends in a round–robin fashion among its
send buffers. Before calling send(2), the ap-
plication writes into the first word of the
buffer.

���

�

��

��

��

��

��

��

	�

� � � � � � � 	
 � �� ��

Figure 5: Effect of ‘‘Width” on Dirty Send Performance

Number of Application Send Buffers

Effect of Application Buffer Policy on TCP Stream Throughput
32KB Socket Buffers, 4KB Sends

Throughput
(mb/s)

Free Send CPU
(%)� � � �

HP–UX Release 9.0 Networking Performance Enhancements

9Revision 1.1, 02/09/93, Copyright Hewlett–Packard Company

Notice that there is a considerable increase
in free CPU when the number of send buff-
ers increases from 8 to 9. This corresponds
to an increase from 32KB of application buff-
er space to 36KB, which is larger than the
size of the send socket buffer.

With a TCP connection, one buffering strate-
gy is to allocate a quantity of bytes equal to
the size of the send socket buffer plus one
send. (Ie SO_SNDBUF + send_size). You
can see this being used in the example code
in Appendix A. This strategy insures that the
application does not try to re–use a buffer
before its time. Returning to the test de-
scribed in Figure 5, when 9 application send
buffers are used the first 8 sends will pro-
ceed, but the 9th send will block until first
send is ACKnowledged by the remote. This
will release the first buffer and unblock the
application. The application can now re–use
the first buffer without additional performance
penalties. It all works something like a circu-
lar buffer.

The total number of bytes being used to hold
data will be the same in this case as it was in
the copy case described at the beginning of
this section. While the application allocates
36KB of space, the Transport will not allocate
any extra space. Copy–on–write allows the
Transport to effectively ‘‘borrow” the buffer
from the application, so long as the applica-
tion does not try to write to it while the
Transport is using it.

The strategy above was geared towards a
TCP unidirectional data stream, but will also
work with a TCP requests/response para-
digm. However, when the application is
written along a request/response paradigm,
then the receipt of a reply can serve as the
indication on the request side that the Trans-
port has finished with the buffer(s) containing
the request. Similarly for the other side the
receipt of a request can indicate that the pre-

vious response buffer is no longer being held
by the Transport. This allows the application
to allocate less buffer space.

The request/reply strategy is the only strate-
gy that can be used with UDP applications.
UDP, unlike TCP, lacks a local indication (eg
blocking on send(2)) that the Transport is fin-
ished wit the buffer. The only indication that
the buffer has been freed is a subsequent
response arriving from the remote system.

3.3Receive Buffer Strategy
As was seen in Section 3.1, page remap-
ping, the optimization used for receive copy
avoidance, is less sensitive to the state of
the buffers in the processor’s data cache.
This is also the case with the number of buff-
ers actually used. Since the pages are being
replaced entirely, rather than borrowed, there
is essentially no time that the Transport is
holding a buffer that the application will try to
access. So, an application does not need to
alter its buffer strategy (eg number of buffers)
to effectively utilize receive copy avoidance.

HP–UX Release 9.0 Networking Performance Enhancements

10 Revision 1.1, 02/09/93, Copyright Hewlett–Packard Company

4 That’s Great, But How Can I Use It?

The copy avoidance features of HP–UX 9.0
and NIO FDDI do need a little help from your
apps. If you can code your application(s)
such that the following conditions are true,
then you can expect that your application(s)
will run with maximum efficiency, both on
HP–UX Release 9.0/NIO FDDI, and on fu-
ture releases and network interfaces:

1 the application has made the appropriate
setsockopt(2) calls to enable copy–avoid-
ance (described later in this section)

2 packets are transferred using calls to
send(2) and recv(2)/read(2)

3 buffers passed to send(2) and
recv(2)/read(2) are page–aligned

4 buffers passed to send(2) and
recv(2)/read(2) are integer multiples of
page size in length

5 the application tries to avoid touching or
otherwise accessing the buffers while they
are in use by the Transport.

6 the application tries to pass buffers that
are ‘‘cache–clean” to send(2) and recv(2)

Some of these limitations may be relaxed or
eliminated in future releases, however, if you
consider these to be the ‘‘least common de-
nominator,” and code accordingly, you
should receive the greatest benefit.

The appendices on the following pages con-
tain code fragments from the netperf
benchmark used to generate the data pres-
ented in this report. They are provided as
example code only, and may or may not be
suitable to your task(s). Further, they repre-
sent neither complete, nor compilable code.

It is assumed that you are already familiar
with the concepts of BSD sockets program-
ming. If you are not, we suggest that you

consult the Berkeley IPC Programmer’s
Guide before you proceed.

Finally, while these examples show one way
to follow the rules listed above, they are not
the only way those rules could be followed.

For a look at a complete program using
these features, consult the source to the net-
perf benchmark. Netperf should be available
from several archives on the Internet.

To enable copy avoidance, ie request it of
the Transport, a new pair of socket options
have been added to the setsockopt(2). They
are SO_SND_COPYAVOID and
SO_RCV_COPYAVOID. Here is a brief de-
scription of the setsockopt(2) interface (see
the manpage for a more complete general
description of setsockopt(2)):

setsockopt(
int s,
int level,
int optname,
const void *optval,
int optlen);

The parameters for the new options are as
follows:

s: the socket descriptor

level: SOL_SOCKET

optname: SO_SND_COPYAVOID –or–
SO_RCV_COPYAVOID

optval: a pointer to an integer whose
value is 1 to enable, or 0 to
disable the feature

optlen: sizeof(int)

HP–UX Release 9.0 Networking Performance Enhancements

11Revision 1.1, 02/09/93, Copyright Hewlett–Packard Company

A Code Fragments for send(2)

Your socket create, connect, and other code might go here...

First of all, tell the Transport that you wish to use the outbound copy avoidance features...

#ifdef SO_SND_COPYAVOID
send_avoidance = 1;
if (setsockopt(send_socket,

 SOL_SOCKET,
 SO_SND_COPYAVOID,
 &send_avoidance,
 sizeof(int)) < 0)

perror(”Could not enable send copy avoidance”);
#endif

Here we allocate our send buffers. It is important to make sure that they are page aligned, and
there are enough of them to have one more send’s worth than will ‘‘fit” with the size specified
for SO_SNDBUF with the setsockopt(2) call. If you do not set SO_SNDBUF explicitly, it’s cur-
rent value can be retrieved with the getsockopt(2) call. In this example, we are assuming that
the send_size is an integral multiple of the page size. It does not have to be, but the example
would be more complicated.

num_send_buffers = (so_sndbuf_size/send_size) + 1;
if (num_send_buffers == 1) num_send_buffers = 2;

We do not know what sort of alignment malloc will provide, so we must align the buffer(s) our-
selves. To make sure that we have enough space in the buffer after we shift the ‘‘real’’ pointer,
we should add the alignment value to the size of the buffer we are allocating... The constant
NBPG comes from the include of <param.h>...

message_base = (char *)malloc((num_send_buffers * send_size) + NBPG);
message_free_ptr = message_base; /* have to retain for the free() */
message_ptr = (char *)(((int)message_base + NBPG – 1) & ~(NBPG – 1));
message_base = message_ptr;
message_end = message_base + (num_send_buffers * send_size);

Everything is set–up...

HP–UX Release 9.0 Networking Performance Enhancements

12 Revision 1.1, 02/09/93, Copyright Hewlett–Packard Company

... and we can start sending buffers. At some point we will have to figure–out where to stop.

while (should_be_sending) {
if((len=send(send_socket,

 message_ptr,
 send_size,
 0)) != send_size) {
perror(”data send error”);
exit(1);

}

This send has completed, so we move our buffer pointer to the next send buffer. If
we have reached the ‘‘end” of the set of buffers, we want to wrap around to the
beginning again.

if ((message_ptr += send_size) == message_end) {
message_ptr = message_base;

}
}

We have finished sending all our data, and can now move on to other things...

HP–UX Release 9.0 Networking Performance Enhancements

13Revision 1.1, 02/09/93, Copyright Hewlett–Packard Company

B Code Fragments using recv(2)

This will also work with read(2) calls against a BSD socket.

Your socket create and other code goes here...

First of all, tell the Transport that you wish to use the outbound copy avoidance features...

#ifdef SO_RCV_COPYAVOID
receive_avoidance = 1;
if (setsockopt(recv_socket,

 SOL_SOCKET,
 SO_RCV_COPYAVOID,
 &receive_avoid,
 sizeof(int)) < 0)

perror(”Could not enable receive copy avoidance”);
#endif

Allocate our receive buffer. The receive copy avoidance does not require that we allocate more
than one buffer, so for this example, we will just allocate one. We add our alignment to the size
passed in to malloc to ensure that there are enough bytes after alignment...

message_base = (char *)malloc(receive_size + NBPG)
message_free_ptr = message_base; /* have to retain for the free() */
message_ptr = (char *)(((int)message_base + NBPG – 1) & ~(NBPG – 1));

Now we just keep receiving data until there is no more.

while (len = recv(recv_socket, message_ptr, recv_size, 0)) {
if (len == –1) {

perror(”problem with recv()”)
exit(1);

}
}

HP–UX Release 9.0 Networking Performance Enhancements

14 Revision 1.1, 02/09/93, Copyright Hewlett–Packard Company

C Tools and Configurations

The data presented in this report was gener-
ated with the netperf benchmark. Netperf is a
benchmark initially developed by Hewlett–
Packard to measure the performance
TCP/UDP/IP on HP 9000 computer systems.
Around the time of this publication, it is ex-
pected that netperf will be made available to
the ‘‘general public” on an ‘‘as–is” basis.

One HP 9000 857 and one HP 9000 847
were used to generate the numbers pres-
ented in this report. Apart from the number of
NIO slots available, these two machines are
identical in performance and no effort has
been made in this report to distinguish be-
tween the two. After December 1, 1992, the
naming scheme and product structure for the
HP 9000 8X7 systems changed. The netperf
results presented here are expected to be
valid for any of the systems in the ‘‘30” per-
formance range (Eg F30, G30, H30, and
I30).

Each system was configured with at least
32MB of main memory, and one J2157A NIO
FDDI card. The systems, along with a single
concentrator, formed a completely isolated
two node FDDI ring. Neither system was
connected to another network.

All systems were running HP–UX Release
9.0 MR kernels with the NIO FDDI software
product installed. One non–standard feature
was enabled to facilitate the gathering of
CPU utilization figures. Briefly, this entails
replacing the normal kernel idle loop with
one that counts while the system is idle.
Such a kernel is not presently available out-
side of the Hewlett–Packard R&D Labs. If
possible, the IND Networking Performance
Team may make a .o file available that en-
ables this feature. USE OF THIS .O FILE
WOULD BE COMPLETELY UNSUP-
PORTED.

If you have any questions about this report,
the system configurations, or the tools used,
please feel free to send Internet mail with a
descriptive subject line to:

perfbrief@hptnjar.cup.hp.com

HP–UX Release 9.0 Networking Performance Enhancements

15Revision 1.1, 02/09/93, Copyright Hewlett–Packard Company

D Routing for Loopback Checksum Offload

In Section 2, we mentioned that to receive the full benefit of checksum offload from the loop-
back interface (lo0), it was necessary to configure host routes pointing to the loopback
interface for each of a host’s directly connected IP addresses. This appendix provides a quick
example to help clarify the point.

Before proceeding, we suggest that you familiarize yourself with the route(1M) and nets-
tat(1M) commands.

Let us assume that we have a system with two directly connected Ethernet Interfaces, with IP
addresses 15.13.104.244, and 192.2.1.244. Also assume that there is a loopback interface at
127.0.0.1. The output of a ‘netstat –r –n’ command on a typical system would look something
like this:

netstat –r –n

Routing tables

Destination Gateway Flags Refs Use Interface

127.0.0.1 127.0.0.1 UH 0 397953 lo0

192.2.1 192.2.1.244 U 0 572167 lan1

15 15.13.104.244 U 2 603013 lan0

If one establishes a connection to 15.13.104.244, the routing code on HP–UX will route that
connection through the Ethernet interface lan0, which will loop the packets back. This interface
does not offer checksum offload, so the TCP code will not try to take advantage of it. However,
you can use ‘‘route add” commands and get a routing table which looks something like this:

route add host 15.13.104.244 127.0.0.1

add host 15.13.104.244: gateway 127.0.0.1

route add host 192.2.1.244 127.0.0.1

add host 192.2.1.244: gateway 127.0.0.1

netstat –r –n

Routing tables

Destination Gateway Flags Refs Use Interface

127.0.0.1 127.0.0.1 UH 0 442246 lo0

192.2.1.244 127.0.0.1 UH 0 0 lo0

15.13.104.244 127.0.0.1 UH 0 0 lo0

192.2.1 192.2.1.244 U 0 572167 lan1

15 15.13.104.244 U 2 633081 lan0

In this case, connections to 15.13.104.244 will be routed through the loopback interface lo0.
This interface does offer checksum offload. A quick test of loopback throughput using an HP
9000 Series 842 shows the performance improving by ~71%, from 28 to 48 mb/s!

HP–UX Release 9.0 Networking Performance Enhancements

16 Revision 1.1, 02/09/93, Copyright Hewlett–Packard Company

E Q & A

Q Which releases of HP–UX support copy–avoidance?

A Copy avoidance requires HP–UX Release 9.0 or greater.

Q Which network interfaces support copy avoidance?

A Presently, the only network interfaces supporting both receive and send copy avoid-
ance is the NIO FDDI (pn J2157A) interface. The Integrated FDDI interface supports
receive copy avoidance only. Future network interfaces may support inbound and/or
outbound copy avoidance.

Q Which network interfaces support Internet checksum offload?

A Internet checksum offload is supported by the NIO FDDI (pn J2157A), loopback, and
Integrated FDDI interfaces. As with copy avoidance, future network interfaces may
provide this feature.

Q Are Internet checksum offload and copy–avoidance supported by the EISA
FDDI (pn J2156A) Interface?

A No.

Q Is Internet checksum offload supported on HP–UX 8.02 with the NIO FDDI
card?

A No. While the NIO FDDI card is available on HP–UX 8.02, the software changes re-
quired to use its Internet checksum offload features are not.

Q Why do sending and receiving copy avoidance work differently?

A The semantics of sending and receiving packets require different implementations.
The semantics of a send(2) call dictate that the application’s data be preserved
across the call and the technique employed is copy–on–write The semantics of a
recv(2) or read(2) call dictate that the application’s data be replaced by the call and
page remapping is used.

Q What is copy–on–write?

A Copy–on–write is a technique whereby a duplicate reference to the page(s) holding
the application’s data is created for the Transport. If the application attempts to write
to that data before the Transport is finished with it, a copy will be made to be used by
the application.

HP–UX Release 9.0 Networking Performance Enhancements

17Revision 1.1, 02/09/93, Copyright Hewlett–Packard Company

Q What is page remapping?

A Page remapping is the swapping of pages between the application and the Trans-
port.

Q Can I avoid copies with sends and receives which are smaller than a page?

A No. The implementation in 9.0 requires that only page–sized and larger quantities be
used. The concept of sub–page copy avoidance is the topic of further study, and
your opinions would be useful. Please feel free to send them to the email address
perfbrief@hptnjar.cup.hp.com.

Q Does copy avoidance work with the write(2) system call?

A No. The code implementing the write(2) system call was not modified to include copy
avoidance.

Q Does Internet checksum offload work with the write(2) system call?

A Yes. Support for Internet checksum offload did not require changes to any system
calls.

Q Does copy avoidance work with UDP sockets?

A Yes, copy avoidance works with UDP, but it is not as easy to use as with TCP. While
there is a way to ensure that applications do not prematurely reuse send buffers with
TCP, there is no similar method for UDP as UDP sends will not block on windows. If
your UDP application operates in a request/reply manner, you can use the receipt of
the reply as the implicit signal that your request is no longer being held by the Trans-
port. Receive copy avoidance will work just the same for UDP as for TCP in all
cases.

Q Will copy avoidance be available on my 68K box?

A No. Copy avoidance will be available for PA–RISC based systems only, and then
only those systems supporting network interfaces providing the necessary features.

Q Does the loopback interface on my 68K box offer checksum offload?

A No.

