Portable Multithreading

The Signal Stack Trick For User-Space Thread Creation

Ralf S. Engelschall
Technische Universit Minchen (TUM)
rse@engelschall.com, http://www.engelschall.com

Abstract

This paper describes a pragmatic but portable fallbackcagmpr for creating and dispatching between the machine
contexts of multiple threads of execution on Unix systenas ldick a dedicated user-space context switching facility.
Such a fallback approach for implementing machine contiexasvital part of a user-space multithreading environ-
ment, if it has to achieve maximum portability across a wialege of Unix flavors. The approach is entirely based
on standard Unix system facilities and ANSI-C languageufiest and especially does not require any assembly code
or platform specific tricks at all. The most interesting &s3s the technique of creating the machine context for
threads, which this paper explains in detail. The descrépgutoach closely follows the algorithm as implemented by
the author for the popular user-space multithreadingtip@NU Portable Thread§éGNU Pth [25]) which this way
quickly gained the status of one of the most portable usacesmultithreading libraries.

Keywords: portability, multithreading, Unix, POSIX, SUSv2, ANSI-Gser-space, context creation, context switch-
ing, signal handler, stack, makecontext, switchcontégalstack, setjimp, longjmp.

Publishing: Early drafts of this paper were distributed with the GNU Rstribution. The final release version was
published on the USENIX Annual Technical Conference, J@23, 2000, San Diego, California, USA.

1 Introduction

1.1 Multithreading Apache webserver as of version 1.3 still uses a pre-
])]) forking process model for serving HTTP requests, al-

The paradigm of programming with multiple threads of {,5gh two experiments with multithreaded Apache vari-

execution (akanultithreading is already a very old one 4ntsin 1996 (withrsthreads[27]) and 1998 (WittNSPR

and dates back to the decades of programming @0th [31]) ajready showed great performance boosts. The
routines[2, 3]. Paradoxically, the use of threads on Unix ¢gme applies to many similar applications.

platforms did not become popular until the early 1990s.
The reason for this restraint mainly is that for a long

Multithreading Advantages time, multithreading facilities under Unix were rare. The
Multithreading can provide many benefits for applica- Situation became better after some vendors 8keand
DEC incorporated threading facilities into their Unix fla-

tions (good runtime concurrency, parallel programming) . o
techniques can be implemented more easily, the popu/°rS andPOSIX standardized a threadingpplication

lar procedural programming style can be combined withProgramming Interfac€APl) (akaPthreadg(1]). Butan
multiple threads of executioetc) but the most interest- P! and a few vendor implementations are not enough to

ing ones are usually performance gains and reduced régh‘ill the portability requirements of modern free soft-
source consumption. Because in contrast to multiproces‘é’are, packgges. Here stand-alone and really portable
applications, multithreaded ones usually require less sydnultithreading environments are needed.

tem resources (mainly memory) and their internal com- The author collected and evaluated over twenty
munication part can leverage from the shared addresgnostly user-space) available multithreading facilities
space. for Unix systems (see Table 1), but only a few of them are
. . C freely available and showed to be really portable. And
Multithreading and Applications even the mostly portable ones suffered from the fact that
Nevertheless there still exist just a few real applicationshey partly depend on assembly code or platform spe-
in the free software world that use multithreading for cific tricks usually related to the creation and dispatch-
their benefit, although their application domains are preing of the individual threads. This means that the num-
destined for multithreading. For instance, the popularber of platforms they support is limited and applications

which are based on these facilities are only portable tdhe major task for a user-space threading system is to cre-

those platforms. This situation is not satisfactory, so ap-ate and dispatch those machine contexts.

plication authors still avoid the use of multithreading if In practice, the second major task it has to do is to en-

they want to (or have to) achieve maximum portability sure that no thread by accident blocks the whole process

for their application. (and thereby all other threads). Instead when an opera-
A pragmatic and mostly portable fallback techniquetion would block, the threading library should suspend

for implementing user-space threads can facilitate wideonly the execution of the current thread and in the mean-

use of multithreading in free software applications. time dispatch the remaining threads. But this task is out-
. side the scope of this paper (see [11] for details about
Ingredients of a Thread this task). We focus only on the aspect of machine con-

A Unix process has many ingredients, but the most im-+text handling.

portant ones are its memory mapping table, the signal

dispatching table, t_he signal mask, the set Qf file descripl_3 The Curse of Portability

tors and the machine context. The machine context in

turn consists of at least the CPU registers including theOur goal of real portability for a threading system causes
program counter and the stack pointer. In addition, theresome non-trivial problems which have to be solved. The
can be light-weight processes (LWP) or threads, whichmost obvious one is that dealing with machine contexts
usually share all attributes with the underlying (heavy-usually suffers from portability, because it is a highly

weight) process except for the machine context. CPU dependent task for which not every Unix flavor pro-
vides a standardized API. Although such an API would
Kernel-Space vs. User-Space be not too hard for vendors to provide, because in prin-

Those LWPs or threads, on a Unix platform classicallyciple it is just a matter of switching a few CPU registers
can be implemented either in kernel-space or in user{mainly the program counter and the stack pointer).
space. When implemented in kernel—space,_one usuAssemb|y Code Considered Harmful

ally calls them LWPs or kernel threads, otherwise (user-)

space) threads. If threads are implemented by the kereftdditionally, we disallow the use of any assembly solu-
the thread context switches are performed by the kernd{Ons Or platform specific tricks, because then the thread-
without notice by the application, similar to the dispatch- N9 System again would be only semi-portable, it can

ing of processes. If threads are implemented in userP€ POrted t\ platforms but on th¢N+1)th platform one
space, the thread context switches are performed usualf}2S t© manually adjust or even extend it to work there,
by an application library without notice by the kernel. too. o o
Additionally, there exist hybrid threading approaches, NS is usually not acceptable, even if it also makes

where typically a user-space library binds one or moreSolving the problems harder. At I_east most of the known
user-space threads to one or more kerel-space LWPs, fé€ software user-space threading systems [22, 23, 24]
do not restrict themself to this and therefore are just semi-

Thread Models portable. But real portability should be a major goal.

The vendor threading facilities und&un SolarisIBM

AIX, DEC Tru64 (formerly DIGITAL UNIX or OSF/) ;

andSGl IRIXuse aM:N mapping [21, 30]i.e., M user- 2 Problem AnaIySIS

space threads are mapped ohtdkernel-space LWPs. . .

On the other hand,inuxThreadg§29] underGNU/Linux 2.1 The Task in Detall

uses d:1 mapping and pure user-space implementation®ur task is simple in principle: provide an API and cor-

like GNU Pth FSU pthreador MIT pthreadsetc.use a responding implementation for creating and dispatching

M:1 mapping [25, 22, 23]. machine contexts on which user-space threads can be im-
From now on we focus on suchl:1 user space plemented.

threading approaches, where one or more user spa

threads are implemented inside a single kernel space prffhe P.roposed AP . o

cess. The exercise is to implement this by using standard? detail we propose the followingpplication Program-

ized Unix system and ANSI-C language facilitiesly. mers InterfacéAPI) for the machine context handling:

B A data structure of typenctx -t which holds the
1.2 The Exercise machine context.

As we have mentioned, a thread shares its state with the ® A function “void mctx _create(mctx _t
underlying process except for the machine context. So *mctx void (= sfaddr)(void *), void * sfarg,

NN
S R
2 o o
& Q@ QJ& ijé ij‘b 6&\0
R & > N S
N Q TR A @ < 9 &
™) LS @ @ A & ORI & KX
Y FF S FHF T L @ Y
e ¥ ¢ N PP pTR7 N S S
N X N S Q, N > AR NS PR
N N F S LS s @ &
Package @@ ¥ ¥ ’\‘(\ @' F Q\ FELE 0 S
gnu-pth 1999 1.3.5 user n.l yes no yes yes no yes yes no nomdsti#sjlj no partly
cmu-lwp 1984 1.4 user n:l yes no yes no - yes yes partly no fedi/8 yes no
fsu-pthread 1992 3.13 user nl no no yes yesno no - - yes sexdii yes yes
mit-pthread 1993 1.8.9 user nil no no yes yesno no - - yes feardil7 yes yes
ptl 1997 990622 user nl no no yes yes no no - - yes semi/fixegle) yes
linuxthreads 1997 2.1.2 user+kernel 1:1 yes no yes yes no no- - yes semiffixed:5 yes yes
uthread 1998 3.4 user n:l yes no yes yes no no - - yes semiHfixegks yes
cthread 1991 991115 user nil no no yes no - yes yes no no sewhi#ix yes yes
openthreads/qt 1996 2.0 user nl no no yes no - Yyes no no no/figethB yes no
rt++/qt 1996 1.0 user nl no no yes no - yes yes no no semi/fixeges no
rsthreads 1996 980331 user nl no yes yes no - yes no no no fisedh® yes no
pcthread 1996 1.0 user n:l no yes yes yes no no - - yes semilfixgebs no
bbthreads 1996 0.3 kernel 1:1 no yes yes no - Yyes no - yes sadiffi yes no
jkthreads 1998 1.2 kernel 1:1 no yesyes no - yes no - yes semdi/fi yes no
nthreads 1997 970604 user nil no yes yes no - yes no - no sewhiffix yes partly
rexthreads 1993 930614 user nil no yes yes no - yes no - no figeth4 yes no
coro 1999 1.0.3 user nil no yes yes no - yes no - no semiffixedes no
greenthreads 1995 1.2 user nl no no no no - Yyes yes - yes dat/m no no
solaris-pthread NN 2.7 user+kernel n:m yes no no yes yes gssny yes NN NN yes
tru64-pthread NN 5.0 user+kernel n:m yes no no yes yes no no nges NN NN yes
aix-pthread NN 4.3 usert+kernel 1:1 yes no no yes yes no no nos N NN yes

Table 1: Summary of evaluated multithreading packages and somesfdhtermined characteristics. Notice that mostly allkages contain
assembly code and are just semi-portabée, they support only a fixed set of platforms and do not autarafyi adjust for new ones.

void » sk addr, sizet sk size ” which creates and 2.2 Technical Possibilities
initializes a machine context structuremrctxwith

a start functiorsf.addr, a start function argument
sfarg, and a stack starting ak addr, which is
sk sizebytes in size.

B A function “void mctx _save(mctx t *mcty ”
which saves the current machine context into the
machine context structuractx

B A function
*mcty) ” which restores the new machine con- g
text from the machine context structuretx This
function does not return to the caller.
does return at the location storednittx(which is
eithersf.addrfrom a previousnctx _create call
or the location of a previousictx _save call).

m A

function

Poking around in the references of the ANSI-C language
reference and the Unix standards show the following
functions on which an implementation can be based:

B There is theucontext
functions getcontext (3), makecontext (3),
swapcontext (3) andsetcontext (3) which
conform to theSingle Unix SpecificatigrvVersion
2 (SUSVv2[20], aka Unix95/98. Unfortunately
these are available on modern Unix platforms only.

(3) facility with the

“void mctx _restore(mctx _t

There are the jmp _buf based functions
setjimp (3) andlongjmp (3) which conform to
ISO 9899:1990 (ISO-C) and thsigimp _buf
based sigsetimp (3) and siglongimp (3)
functions which conform to IEEE Std1003.1-1988
(POSIX, andSingle Unix Specificatigrversion 2
(SUSvZ20], akaUnix95/98. The first two func-
tions are available really on all Unix platforms, the

Instead it

“void mctx switch(mctx _t

* mctxold, mctx _t * mctxnew) ” which switches
from the current machine context (saved to
mctxold for later use) to a new context (restored
from mctxnew). This function returns only to the
caller if mctx _restore or mctx _switch s
again used omctxold.

last two are available only on some of them.

On some platformsetjmp (3) andlongjmp (3)
save and restore also the signal mask (if one
does not want this semantics, one has to call
_setimp (3) and _longjmp (3) there) while on
others one has to explicitly use the superset

functions sigsetjmp
for this.
that setimp (3) andlongjmp (3) save and re-
store the signal mask, because if this is not the
case in practice, one easily can replace themt
with sigsetjimp (3) andsiglongjmp (3) calls
(if available) or (if not available) emulate the
missing functionality manually with additional
sigprocmask (2) calls (seepth _mctx.c in
GNU Pth[25]).

(3) andsiglongimp (3)

In our discussion we can assume /* ~make new context/
makecontext(&(mctx->uc),

sf_addr, 1, sf arg);
return;

Unfortunately there are still lots of Unix platforms where
this approach cannot be used, because the standard-
ized ucontext (3) API is not provided by the ven-
dor. Actually the platform test results faBNU Pth

(see Table 2 below) showed that only 7 of 21 success-

B There is the functiorsigaltstack

cestor functiorsigstack

(2) which
conforms to theSingle Unix SpecificatignVer-
sion 2 SUSVv2[20], aka Unix95/98 and its an-
(2) from 4.2BSD The
last one exists only oBSD-derived platforms, but

fully tested Unix flavors provided the standardized API
(3), etc). On all other platformsGNU

Pth was forced to use the fallback approach of imple-
menting the machine context as we will describe in the
following. Obviously this fallback approach has to use

(makecontext

the first function already exists on all current Unix the remaining technical possibilitiesigsetimp (3),
platforms. etc).
) . . Operating System Architecture(s) mcsc | sjlj
2.3 Maximum Portability Solution FreeBSD 2.x/3.x Intel no | yes
FreeBSD 3.x Intel, Alpha no yes
The maximum portable solution obviously is to | NetBSD1.3/1.4 Intel, PPC, M68K | no yes
use the standardizedmakecontext (3) function OpenBSD 2.5/2.6 Intel, SPARC no | yes
. BSDI 4.0 Intel no yes
to create threads andswitchcontext —(3) or Linux 2.0.x glibc 1.x/2.0 | Intel, SPARC, PPC| no | yes
getcontext (3)/setcontext (3) to dispatch them. Linux 2.2.x glibc 2.0/2.1 | Intel, Alpha, ARM | no yes
And actually these are the preferred functions modern gun gulno_s ;-51/56/27 ggﬁgg no yes
H H H un Solaris 2. . . yes yes
user-space multithreading systems are using. We could SCO Unbvre 2x7x | Intel ves | yes
easily implement our proposed API as following (all | gcqo OpenServer5.0x | Intel no ves
error checks omitted for better readability): IBM AIX 4.1/4.2/4.3 RS6000, PPC yes | yes
HP HPUX 9.10/10.20 HPPA no yes
/ * machine context data structurex/ HP HPUX 11.0 HPPA yes yes
typedef struct mctx_st { SGI IRIX 5.3 MIPS 32/64 no yes
ucontext_t uc; SGI IRIX 6.2/6.5 MIPS 32/64 yes yes
} metx_t; ISC 4.0 Intel no yes
. Apple MacOS X PPC no yes
/'« save machine context / DEC OSF1/Tru64 4.0/5.0 Alpha yes | yes
#defi ne mctx_save(mctx) SNI ReliantUNIX MIPS yes | yes
(voi d)getcontext(&(mctx)->uc) AmigaOS M68K no yes
/ = restore machine context«/
#def i ne mctx_restore(mctx) -
(voi d)setcontext(&(mctx)->uc) Table 2. Summary of operating system support. The level and type

of support found on each tested operating systemsc:

/% switch machine contexts / functional ~makecontext (3)/switchcontext (3),
A . sl functional setjmp (3)/longjmp (3) or sig-
#def i ne mctx_switch(mctx_old,mctx_new) \ setimp (3)/siglongjmp (3). See filePORTINGIn GNU

| *

create machine context/

(voi d)swapcontext(&((mctx_old)->uc),

Pth [25] for more details.
&((mctx_new)->uc))

2.4 Remaining Possibilities

voi d mctx_create(

mctx_t *mctx,
voi d (*sf_addr)(void *),
voi d *sk_addr, size_t sk_size)

Our problem can be divided into two parts, an easy one
and a difficult one.

The Easy Part

That setjimp (3) andlongjmp (3) can be used to im-
plement user-space threads is commonly known [24, 27,
28]. Mostly all older portable user-space threading li-

voi d *sf_arg,

/ = fetch current context */
getcontext(&(mctx->uc));

/= adjust to new contextx /

mctx->uc.uc_link = NULL; braries are based on them, although some problems are
mctx->uc.uc_stack.ss_sp = sk_addr; . L .
metx->uc.uc_stack.ss size = sk size: known with these facilities (see below). So it becomes

mctx->uc.uc_stack.ss_flags = 0; clear that we also have to use these functions and base

our machine contextnfctx _t) on theirjmp _buf data mctx_t *mctx,

structure voi d (*sf_addr)(void *), void =*sf _arg,
.' . . . voi d *sk_addr, size_t sk_size)
We immediately recognize that this way we have{
at least solved the dispatching problem, because our ...initialization of ntt x to be filled in...
mctx _save , mctx _restore and mctx _switch }

functions can be easily implemented wiktjmp (3)

andlongjmp (3). There is one subtle but important point we should men-

- tion: The use of the C pre-processtulefine direc-
The Difficult Part tive to implementmctx _save , mctx _restore and

Nevertheless, the difficult problem of how to create themctx _switch is intentional. ~For technical reasons
machine context remains. Even knowing that our maJelated tosetimp (3) semantics andeturn related
chine context igmp _buf based is no advantage to us. stack behavior (WhICh we will explain later in detall)
A jmp _buf has to be treated by us as an opaque dat#e cannotimplement these three functions (at least not
structure — for portability reasons. The only operationsMctx _switch) as C functions if we want to achieve
we can perform on it areetjmp (3) and|0ngjmp (3) maximum portablllty across all platforms. Instead they
calls, of course. Additionally, we are forced to use have to be implemented as pre-processor macros.
sigaltstack (3) for our stack manipulations, because

itis the only portable function which actually deals with 3,1 Algorithm Overview

stacks.

So it is clear that our implementation fonctx _- The general idea fomctx _create is to configure the
create has to play a few tricks to use janp _buf given stack as a signal stack gigaltstack (2), send
for passing execution control to an arbitrary startupthe current process a signal to transfer execution con-
routine. And our approach has to be careful to en-rol onto this stack, save the machine context there via
sure that it does not suffer from unexpected side-Setimp (3), getrid of the signal handler scope and boot-
effects. It should be also obvious that we can-Strap into the startup routine.
not again expect to find an easy solution (as for ~ The real problem in this approach comes from the
mctx _save , mctx _restore and mctx _switch), signal handler scope which implies various restrictions
becausesetjimp (3) andsigaltstack (3) cannot be 0N Unix platforms (the signal handler scope often is just
trivially combined to formmctx _create . a flag in the process control block (PCB) which various

system calls, likesigaltstack (2), check before al-
lowing the operation — but because it is part of the pro-
3 |mp|ementati0n cess state the kernel manages, the process cannot change
it itself). As we will see, we have to perform a few tricks
As we have already discussed, our implementation conto get rid of it. The second main problem is: how do we
tains an easy parir(ctx _save , mctx restore and prepare the calling of the start routine without immedi-
mctx _switch) and a difficult part ifnctx _create). ately entering it?
Let us start with the easy part, whose implementation is
oby_lou§ (all error checks again omitted for better read—3'2 Algorithm
ability):
The input to thanctx _create function is the machine

/= machine context data structure / context structurenctx which should be initialized, the

typedef struct mctx_st

jmp_buf jb; thread startup function addresfsaddr, the thread startup
b ometx_t; function argumensf.arg and a chunk of memory start-
/% save machine context / ing at skaddr and sk sizebytes in size, which should
#def i ne mctx_save(mctx) \ become the threads stack.
(voi d)setjmp((mctx)->jb) The following algorithm formctx _create is di-
/+ restore machine context/ rectly modeled after the implemented algorithm one can
#def i ne mctx_restore(mctx) \ find in GNU Pth[25], which in turn was derived from
longjmp((mctx)->jb, 1) techniques originally found irsthreads[27]:
;aefsiwr:tghr;ncﬁghgﬁt%%?ﬁé&/o|d]mctx new) \ 1. Preserve the current signal mask and block an ar-
i f (setjmp((mctx_old)->jb) == 0) \ bitrary worker signal (we us8IGUSR1, but any
longjmp((mctx_new)->jb, 1) signal can be used for this — even an already used
/= create machine context / one). This worker signal is later temporarily re-
voi d mctx_create(quired for the trampoline step.

10.

11.

12.

. Preserve a possibly existing signal action for the 13. Restore the previously saved machine context of
worker signal and configure a trampoline function mctx _create to transfer execution control back
as the new temporary signal action. The signal de- toit.
livery is configured to occur on an alternate signal

stack (see next step). 14. Return to the calling application.

.)) When the calling application now again switches into the
- Preserve a possibly active alternate signal stacksaplished machine contexictx the thread starts run-
and configure the memory chunk starting atping at routinesf addr with argumentsfarg. Figure 1
skaddr as the new temporary alternate signaljysirates the algorithm (the numbers refer to the algo-
stack of lengtisk size rithm steps listed above).

. Save parameters for the trampoline stemctk

sf.addr, sf.arg, etc) in global variables, send the metx_create mCtX—(t:rrg%tSo”ne
current process the worker signal, temporarily un- ~ | -

block it and this way allow it to be delivered on the >

signal stack in order to transfer execution control s |

to the trampoline function. (6] |‘_"

\

. After the trampoline function asynchronously en-
tered, save its machine context in timetx struc-

ture and immediately return from it to terminate
the signal handler scope. B)| | mctx_creatdoot
. Restore the preserved alternate signal stack, pre- - m
served signal action and preserved signal mask for
worker signal. This way an existing application - E
configuration for the worker signal is restored. | -
/ '
. Save the current machine context of E
mctx _create . This allows us to return to this | —————— |\ -
point after the next trampoline step. main ["sf_addr(sf_arg)
. Restore the previously saved machine context of S -
the trampoline functionmcty to again transfer ex- .
ecution control onto the alternate stack, but this Y ,
time without(!) signal handler scope. mctx_creaje
. After reaching the trampoline functiorm¢ty lmctx switcé1 .
again, immediately bootstrap into a clean stack S IS V
frame by just calling a second function. ! motx switch | MeX_switch
feceecas Tretececccaecaacaay] -,
B AR TR EE R Rt .
Set the new signal mask to be the same as ; mctx_switch

the original signal mask which was active when =7
mctx _create was called. This is required be-
cause in the first trampoline step we usually had at /r{ai stafk /g(ar
least the worker signal blocked. 7

Load the passed startup informatiosfgddr,
sfarg) from mctx create into local (stack-
based) variables. This is important because their
values have to be preserved in machine context de-

pendent memory until the created machine contexkigure 1: lilustration of the machine context creation proceduree Th

is the first time restored by the application. thick solid lines and numeric marks correspond to the al-
gorithm steps as described in section 3.2. The thick dotted

. lines show a possible further processing where a few con-

Save the current machine context for later restor- text switches are performed to dispatch between the main

ing by the calling application. thread and the new created thread.

sk size

3.3 Source Code |+ Step14:x/
return;
The corresponding ANSI-C code, which implements}

mctx _create , is a little bit more complicated. But

. voi d mctx_create_trampoline int si
with the presented algorithm in mind, it is now straight- { - —ramp (9
forward. /* Step5: */

i f (mctx_save(mctx_creat) == 0) {

static metx_t mctx_caller; mctx_called = TRUE;
static sig_atomic_t mctx_called,; return;
static mctx_t * mctx_creat;
static void (*metx_creat_func)(void *); I+ Step9:+/
static void *mctx_creat_arg; mctx_create_boot();
static sigset_t mctx_creat_sigs;
voi d mctx_create(voi d mctx_create_boot(voi d)

mctx_t *mctx,) i

voi d (*sf_addr)(void *), void *sf arg, voi d (*mctx_start_func)(void *);

voi d *sk_addr, size_t sk_size)
struct sigaction sa;

struct sigaction osa;

struct sigaltstack ss;

struct sigaltstack oss;

sigset_t osigs;

sigset_t sigs;

[+ Step1l:*/

sigemptyset(&sigs);

sigaddset(&sigs, SIGUSR1);
sigprocmask(SIG_BLOCK, &sigs, &O0sigs);

[+ Step2:+*/
memset((voi d *)&sa, O,

si zeof (struct sigaction));
sa.sa_handler = mctx_create_trampoline;
sa.sa_flags = SA_ONSTACK;
sigemptyset(&sa.sa_mask);
sigaction(SIGUSR1, &sa, &osa);

[+ Step 3: */
SS.SS_sp = sk_addr;

s$s.ss_size = sk_size;
ss.ss_flags = 0;
sigaltstack(&ss, &o0ss);

[+ Step4: */

mctx_creat = mctx;
mctx_creat_func = sf_addr;
mctx_creat_arg = sf_arg;
mctx_creat_sigs = 0sigs;
mctx_called = FALSE;

kill(getpid(), SIGUSR1);
sigfillset(&sigs);
sigdelset(&sigs, SIGUSR1);
whi | e (Imctx_called)
sigsuspend(&sigs);

[+ Step6: */

sigaltstack(NULL, &ss);

ss.ss_flags = SS_DISABLE;

sigaltstack(&ss, NULL);

if (I(oss.ss_flags & SS_DISABLE))
sigaltstack(&oss, NULL);

sigaction(SIGUSR1, &osa, NULL);

sigprocmask(SIG_SETMASK,

&osigs, NULL);

[+ Step7 & Step 8:x/
mctx_switch(&mctx_caller, mctx);

voi d *mctx_start_arg;

[+ Step 10: */
sigprocmask(SIG_SETMASK,
&mctx_creat_sigs, NULL);

[+ Step11:*/
mctx_start func = mctx_creat_func;
mctx_start_arg = mctx_creat_arg;

[+ Step 12 & Step 13:+/
mctx_switch(mctx_creat, &mctx_caller);

[+ The thread “magically” starts... */
mctx_start_func(mctx_start_arg);

[+ NOTREACHEB/
abort();

3.4 Run-time Penalty

After this discussion of the implementation details, an
obviously occuring question now is what the expected
run-time penalty is. That is, what does our presented
machine context implementation cost compared to a
ucontext (3) based solution. From the already dis-
cussed details we can easily guess that our complex ma-
chine context creation procedunadtx _create) will

be certainly noticeably slower than a solution based on a
ucontext (3) facility.

But a wild guess is not sufficing for a reason-
able statement. So we have writtenSample Ma-
chine Context Benchma(MCB [32]) which was used
to compare run-time costs of thactx create and
mctx _switch functions if once implemented through
thePOSIXmakecontext (3)/swapcontext (3)func-
tions (as shown in section 2.3), and once imple-
mented with our based fallback implementation (for
convenience reasons we directly ussedjmp _buf ,
sigsetimp (3) and siglongjmp (3) in the bench-
mark, because all tested platforms provided this). The
results are shown Table 3 below.

As one can derive from these evaluations, our

signal stack trick to implemenmctx _create in problem, as experience showed. For instancepERT
practice is approximately 15 times slower than theS. THAU's Really Simple Threadgsthread$ [27] was
makecontext (3) based variant. This cost should not ported to several platforms and was used to run an exper-
be neglected. On the other hand, #igsetimp (3)/ imental multithreaded version of the Apache webserver.
siglongjmp (3) basednctx _switch performs about THAU’s approach was similar to ours, but differed signif-
as good as thewapcontext (3) based variant (the rea- icantly in the way the signal handler is left. In particular,
son why on most of the tested platforms it is even slightlyin an attempt to avoid the unsafe stack frame, it used a
faster is not known — but we guess it is related to alongjmp (3) call to leave the signal handler, rather than
greater management overhead in tleentext (3) fa- returning from it. But this approach does not work on
cility, which is a superset of the functionality we require) someSys\tderived kernels, as we already mentioned.
Orinshort: our presented fallback approach costs notice- The problem is that these kernels do not “believe”
able extra CPU cycles on thread creation time, but is ashat the code is out of the signal-handling context, un-
fast as the standardized solution under thread dispatching the signal handler has returned — and accordingly,

time. refuse to allow readjustment of the signal stack until it
has. But with thersthreadsapproach, the signal han-

10000x mctx_create (in seconds): dler that created the first thread never returns, and when
Platform mesc| si | overhead rsthreadswantg to creatg the second thread, these kernels
Sun Solaris 2.6 (SPARC)| 0.076 | 1.268 16.7 refuse to readjust the signal stack, and we are stuck. So
DEC Tru64 5.0 (Alpha) | 0.019 | 0.235 12.4 with portability in mind, we decided that it is better to get
SGIIRIX 6.5 (MIPS) 0.105 1.523 14.5 rid of the signal handler scope with the straight-forward
SCO UnixWare 7.0 (Intel)| 0.204 | 3.827 18.8 « "
HP HP/UX 11.0 (HPPA) | 0.057 | 0.667 118 return and instead fight the mentioned (simpler)

Average: 14.8 problem of an unsafe stack frame.
Fortunately, in practice this is not as problematic as

10000x mctx_switch (in seconds): . . .
it seems, because evaluations (@KU Pth on a wide

Platform mcsc sjli | overhead .
Sun Solaris 2.6 (SPARC)| 0.137 | 0.210 15 range of current Unix platforms showed that one can
DEC Tru64 5.0 (Alpha) | 0.034 | 0.022 0.6 reach a safe stack frame again by just calling a function.
SGI IRIX 6.5 (MIPS) 0.235 | 0.190 0.8 That is the reason why our algorithm enters the second
SCO UnixWare 7.0 (Intel)| 0.440 | 0.398 0.9 t line f tion in step 9
HP HP/UX 11.0 (HPPA) | 0.106 | 0.065 0.6 rampolin€ function in step 9.

Average: 0.9 The Uncooperative longjmp(3)

Table 3: Summary ofSimple Machine Context Benchmg&MCB, Even on operating systems which have workR@SIX
[32]). The speed of machine context creation and switching . . .
found on each tested operating systemcsc functional functions, our approach may theoretically still not work,

makecontext (3)/switchcontext (3),sjlj: functional becauselongjmp (3) does not cooperate. For in-
sigsetimp (3)/siglongjmp (3). overhead the over-

head of usingsjlj instead ofmcsc stance, on some platforms the standdocllongjmp (3)
branches to error-handling code if it detects that the calle
3.5 Remaining Issues tries to jumpup the stackj.e,, into a stack frame that has

already returned.
The presented algorithm and source code can be directly This is usually implemented by comparing the cur-
used in practice for implementing a minimal threading rent stack pointer to the one in timp _buf structure.
system or the concept of co-routines. Its big advantag@hat is why it is important for our algorithm to return
is that if the operating system provides the required stanfrom the signal handler and this way enter the (different)
dardized primitives, we do not need to know anything atstack of the parent thread. In practice, the implemen-
all about the machine we are running on — everythingtation in GNU Pthshowed that then one no longer suf-
just works. Nevertheless, there remain a few special isfers from those uncooperatil@ngjmp (3) implementa-
sues we still have to discuss. tions, but one should keep this point in mind when reach-
The Waggly longjmp(3) after Return ing even more gncooperative variants on esoteric Unix

platforms. Ifit still occurs, one can only try to resume the

On some platformdpngjmp (3) may not be called af- neration by using a possibly existing platform-specific
ter the function which called theetjimp (3) returned. o.qr handling hook.

When this is done, the stack frame situation is not guar-

anteed to be in a clean and consistent state. But this ig@rbage at Bottom of Stacks

exactly the mechanism we use in order to get rid of theThere is a subtle side-effect of our implementation: there

signal handler scope in step 5. remains some garbage at the bottom of each thread stack.
The only alternative would be to leave the signal han-The reason is that if a signal is delivered, the operat-

dler vialongjmp (3), but then we would have another ing system pushes some state onto the stack, which is

restored later, when the signal handler returns. But althe memory mapped area. This resizing can be done
though we return from the signal handler, we jump ineither by copying the stack contents into a new larger
again, and this time we enter not directly at the bottomarea which is then re-mapped to the old address or via
of the stack, because of tsetjimp (3) in the trampoline an even more elegant way, as the vendor threading li-
function. braries ofSun Solaris FreeBSDand DEC Tru64do it:
Since the operating system has to capture all CPUhe thread stacks are allocated inside memory mapped
registers (including those that are ordinarily scratch regareas which are already initially a few MB in (virtual)
isters or caller-save registers), there can be a fair amoursize and then one just relies on the virtual memory sys-
of memory at the bottom of the established thread stackiem’s feature that only the actually consumed memory
For some systems this can be even up to 1 KB of garbagepace is mapped.
[27]. But except for the additional memory consumption Startup Routine Termination
it does not hurt.
We just have to keep in mind this additional stack
consumption when deciding the stack sizk gizg. A

There is a cruelabort (3) call at the end of our
mctx _create _boot function. This means, if the

reasonable stack size usually is between 16 and 32 KBs_tartup routine would return, the process is aborted. That

Less is neither reasonable nor always allowed (current _ObV'Ol,J)SIy not reasonable, so why have we written it
Unix platforms usually require a stack to be at least 16 IS way: L
L If the thread returns from the startup routine, it should
KB in size). . . . :
be cleanly terminated. But it cannot terminate itself (for
Stack Overflows instance, because it cannot free its own stack while run-

There is a noticeable difference between the initiall 9 °" It, etc). So the termination handling actually

: - . is the task of the thread library scheduler. As a conse-
main () thread and the explicitly spawned threads: the . . .
- -quence, the thread spawning function of a thread library
initial thread runs on the standard process stack. This .
. . : Should be not directlynctx _create
stack automatically can grow under Unix, while the

stacks of the spawned threads are fixed in size. So stack I.n.stead the thread spawning funct_lon should use an
additional trampoline function as the higher-level startu

overflows can occur for the spawned threads. This im-_" . ! . .
. r(%utme. And this trampoline function performs a context
plies that the parent has to make a reasonable guess 0

. . switch back into the thread library scheduler before the
the threads stack space requirement already at spawnm&N .
time Iower-level startup routine would return. The scheduler

. . . then can safely remove the thread and its machine con-
And there is no really portable solution to this prob-

lem, because even if the thread library’s scheduler catEXt' _That Is why th(_abort (3) call is never r_eached in
' . : : ractice (more details can be found in the implementa-
detect the stgck (_)verflow, it cannot eas!ly_ r_es_|ze_the stac fons ofpth _spawn andpth _exit in pth lib.c of
The reason is simply that the stack initialization goesg\u Pth[25])
hand in hand with the initialization of the start routine,
as we discussed before. And this start routine has to bd he sigstack(2) Fallback Situation
a real C function in order toall. But once the threadis Not all platforms provide the standardized
running, there no longer exists such an entry point. Sosjgaltstack (2). Instead they at least provide
even if the scheduler would be able to give the threadhe 4.2BSD ancestor functionsigstack (2). But
a new enlarged stack, there is no chance to restart thene cannot trivially replacesigaltstack (2) by
thread on this new stack. sigstack (2) in this situation, because in contrast to
Or more correct, there is nuortableway to achieve sigaltstack (2), the oldsigstack (2) does not au-
it. As with the previous problems, there is a non-portabletomatically handle the machine dependent direction of
solution. That is why our implementation did not deal stack growth.
with this issue. Instead in practice one usually lets the Instead, the caller has to know the direction and
scheduler just detect the stack overflow and terminate thalways call sigstack (2) with the address of the
thread. This is done by using a red zone at the top of théottom of the stack. So, in a real-world imple-
stack which is marked with a magic value the schedulementation one first has to determine the direction of
checks between thread dispatching operations. stack growth in order to ussigstack (2) as a re-
Resizing solutions are only possible in semi-portableplacement forsigaltstack (2). Fortunately this
ways. One approach is to place the thread stacks into ® easier than it seems on the first look (for de-
memory mapped area (seemaf2)) of the process ad- tails see the macroAC CHECKSTACKGROWT&ahd
dress space and let the scheduler c86BSEGVsig- ACCHECKSTACKSETURN file aclocal.m4 from
nals. When such a signal occurs, because of a stackNU Pth[25]). Alternatively if one can afford to waste
overflow in this area, the scheduler explicitly resizesmemory, one can use an elegant trick: to set up a stack of

size N, one allocates a chunk of memory (starting at ad- i i

N llocat hunk of tarting at ad-More Machine Context Ingredients

dressA) of S|zeN><2a_nd then caIIS|gsFacI_< @ with Einally, for a real-world threading implementation one
the parametersk addr=A + N andsksize=N, i.e, 0one g ally wants to put more state into the machine con-
specifies the middle of the memory chunk as the stackey; strycturemctx t. For instance to fulfill more

base. POSIXthreading semantics, it is reasonable to also save
The Blind Alley of Brain-Dead Platforms and restore the globarrno variable. All this can

The world would not be as funny asiitis, if really all Unix P€ €asily achieved by extending thectx -t structure
platforms would be fair to us. Instead, currently at leastVith additional fields and by making thectx save ,
one platform exists which plays unfair: unfortunately, MCtx -restore and metx _switch functions to be
ancient versions of the popul@NU/Linux Although ~ aware of them.

we will discover that it both providesigaltstack (2)

andsigstaf:k (2), our approa_ch qu’t work (_)hinux 3.6 Related Work

kernels prior to version 2.2 arglibc prior to version 2.1.

Why? Because itbc provides only stubs of these Beside GNU Pth [25], there are other multithread-
functions which always return jusL with errno set ing libraries which use variants of the presented ap-
to ENOSYSSo, this definitely means that our nifty al- proach forimplementing machine contexts in user-space.
gorithm is useless there, because its central pmint Most notably there are ®BERT S. THAU’s Really
sigaltstack (2)/sigstack (2). Nevertheless we do Simple Threadgrsthreads [27]) package which uses
not need to give up. At least not, if we, for a single brain- sigaltstack (2) in a very similar way for thread cre-
dead platform, accept to break our general goal of noation, and KOTA ABE’s Portable Thread LibraryPTL,
using any platform dependent code. [24]) which uses aigstack (2) approach. But because

So, what can we actually do here? All we have to do,their approaches handle the signal handler scope differ-
is to fiddle around a little bit with the machine-dependentently, they are not able to achieve the same amount of
jmp _buf ingredients (by poking around setjmp.h portability and this way do not work for instance on some
or by disassemblinpngjmp (3) in the debugger). Usu- System-V-derived platforms.
ally one just has to do setjmp (3) to get an initial state
in thejmp _buf structure and then manually adjust two
of its fields: the program counter (usually a structure

member with pc” in the name) and the stack pointer \yg have presented a pragmatic and mostly portable fall-
(usually a structure member witls3” in the name). h5ck approach for implementing the machine context for
Thatis all and can be acceptable for a real-world im-,ger_space threads, based entirely on Unix system and
plementation which really wants to cover moslyplat- aANS|-C language facilities. The approach was success-
forms — at least as long as the special treatment is needggyy tested in practice on a wide range of Unix flavors
just for one or two platforms. But one has to keep inpy GNU Pthand should also adapt to the remaining Unix
mind that it at least breaks one of the initial goals andp|atforms as long as they adhere to the relevant standards.
has to be treated as a last chance solution. The GNU Pth package is distributed under the
Functions sigsetjmp(3) and siglongjmp(3) GNU Library General Public License (LGPL 2.1) and
One certainly wants theOSIX thread semantics freely available fromhttp://www.gnu.org/software/pth/
where a thread has its own signal mask. As al-2ndftp://ftp.gnu.org/gnu/pth/
ready mentioned, on some platforrestjimp (3) and
longjmp (3) do not provide this and instead one has3 g Acknowledgements
to explicitly call sigsetjimp (3) andsiglongimp (3)
instead. There is only one snare: on some platd would like to thank RBERTS. THAU, DAVID BUTEN-
forms sigsetjimp (3)/siglongjmp (3) save also in- HOF, MARTIN KRAEMER, ERIC NEWTON and BRUNO
formation about the alternate signals stack. So herd¢daiBLE for their comments which helped to write the
one has to make sure that although the thread diskitial version of this paper. Additionally, credit has to
patching later usesigsetjimp (3)/siglongjmp (3), be given to GiIRISTOPHERSMALL and the USENIX re-
the thread creation step imctx _create still uses viewers for their invaluable feedback which allowed this
plain setimp (3)longjmp (3) calls for the trampo- paper to be extended, cleaned up and finally published
line trick. One just has to be careful because theat the USENIX Annual Technical Conference 2000. Fi-
jmp _buf andsigjmp _buf structures cannot be mixed nally, thanks go to all users @NU Pthfor their feed-
between calls to theigsetimp (3)/siglongjmp (3) back on the implementation, which helped in fine-tuning
andsetjmp (3)longjmp (3). the presented approach. rse]

3.7 Summary & Availability

10

References

[1] POSIX 1003.1c ThreadingEEE POSIX 1003.1¢-1995,
ISO/IEC 9945-1:1996

M.E. CoNwAY: Design of a separable transition-
diagram compiler. Comm. ACM 6:7, 1963, p.396-408

E.W. DIJKSTRA: Co-operating sequential processés

F. Genuys (Ed.)Programming LanguageNATO Ad-
vanced Study Institute, Academic Press, London, 1965,
p.42-112.

B. NicHOLS, D. BUTTLAR, J.P. RRREL: Pthreads
Programming - A POSIX Standard for Better Multipro-
cessingO’'Reilly, 1996; ISBN 1-56592-115-1

B. LEwis, D. J. BERG. Threads Primer - A Guide To
Multithreaded ProgrammingPrentice Hall, 1996; ISBN
0-13-443698-9

S. J. NORTON, M. D. DIPASQUALE: Thread Time - The
Multithreaded Programming Guid®rentice Hall, 1997;
ISBN 0-13-190067-6

D. R. BUTENHOF. Programming with POSIX Threads
Addison Wesley, 1997; ISBN 0-201-63392-2

S. PrRAsSAD: Multithreading Programming Techniques
McGraw-Hill, 1996; ISBN 0-079-12250-7

S. KLEINMAN, B. SMALDERS, D. SHAH: Program-
ming with ThreadsPrentice Hall, 1995; ISBN 0-131-
72389-8

C.J. NORTHRUP Programming With Unix Threads
John Wiley & Sons, 1996; ISBN 0-471-13751-0

P. BARTON-DAvIS, D. MCNAMEE, R. VASWANI, E.
LazowskA: Adding Scheduler Activations to Mach 3.0
University of Washington, 1992; Technical Report 92-
08-03

D. STEIN, D. SHAH: Implementing Lightwight Threads
SunSoft Inc., 1992 (published at USENIX'92).

W.R.STEVENS: Advanced Programming in the Unix
Environment Addison-Wesley, 1992; ISBN 0-201-
56317-7

D. LEwWINE: POSIX Programmer’s Guide: Writing
Portable Unix Programs O’Reilly & Associates,Inc.,
1994; ISBN 0-937175-73-0

BRYAN O’SULLIVAN : Frequently
questions for comp.os.reseaych
http://www.serpentine.combos/os-faq/,
ftp://rtfm.mit.edu/pub/usenet/comp.os.research/

SUN MICROSYSTEMS INC: Threads Frequently Asked
Questions 1995, http://www.sun.com/workshop/-
threads/fag.html

(2]

(3]

(4]

(5]

(6]

[7]

(8]

9]

(10]

(11]

(12]

(13]

(14]

asked
1995;

(15]

(16]

11

[17] BRYAN O’SULLIVAN:
tions for comp.programming.threads
http://www.serpentine.combos/threads-faq/.

[18] BiL Lewis: Frequently asked questions for
comp.programming.threads 1999; http://-
www.lambdacs.com/newsgroup/FAQ.html

Frequently asked ques-
1997;

[19] NUMERIC QUEST INC: Multithreading - Defini-
tions and Guidelings 1998; http://www.numeric-
quest.com/lang/multi-frame.html

[20] THE OPEN GROUF. The Single Unix Specification,
Version 2 - Threads 1997; http://www.opengroup-

.org/onlinepubs/007908799/xsh/threads.html

SUN MICROSYSTEMS INC: SMI Thread Resources
http://www.sun.com/workshop/threads

[21]

[22] FRANK MUELLER: FSU pthreads1997; http://www-

.cs.fsu.edd/mueller/pthreads/

CHRIS PROVENZANO: MIT pthreads 1993;
http://www.mit.edu/people/proven/pthreads.html
(old), http://www.humanfactor.com/pthreads/mit-
pthreads.html (updated)

KoTta ABE: Portable Threading LibraryPTL); 1999;
http://www.media.osaka-cu.ac.j¥-abe/PTL/

RALF S. ENGELSCHALL: GNU Portable Thread@Pth);
1999; http://www.gnu.org/software/pth/, ftp:/ftp.gnu
.org/gnu/pth/

MICHAEL T. PETERSON POSIX and DCE Threads

For Linux (PCThreads); 1995; http://members.aa-
.netl mtp/PCthreads.html

ROBERT S. THAU: Really Simple Threadgsthreads);
1996; ftp://ftp.ai.mit.edu/pub/rst/

JOHN BIRRELL: FreeBSD uthreads
ftp://ftp.freebsd.org/pub/FreeBSD/FreeBSD-
current/src/lib/libcr/uthread/

(23]

[24]

[25]

[26]

[27]

[28] 1998;

[29] XAVIER LEROY: The LinuxThreads library 1999;

http://pauillac.inria.ff7 xleroy/linuxthreads/

[30] IBM: AIX Version 4.3 General Programming Concepts:
Writing and Debugging Programs; Understanding
Threads 1998; http://www.rs6000.ibm.com/ddink/-
enUS/adoclib/aixprggd/genprogc/understanding-

_threads.htm

[31] Netscape Portable Runtime (NSPR);
www.mozilla.org/docs/refList/refNSPR/,

Ixr.mozilla.org/seamonkey/source/nsprpub/

http://-
http://-

[32] RALF S. ENGELSCHALL: Simple Machine Context
Benchmark 2000; http://www.gnu.org/software/pth-

/smcb.tar.gz

