/* ** GNU Pth - The GNU Portable Threads ** Copyright (c) 1999-2007 Ralf S. Engelschall ** ** This file is part of GNU Pth, a non-preemptive thread scheduling ** library which can be found at http://www.gnu.org/software/pth/. ** ** This library is free software; you can redistribute it and/or ** modify it under the terms of the GNU Lesser General Public ** License as published by the Free Software Foundation; either ** version 2.1 of the License, or (at your option) any later version. ** ** This library is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ** Lesser General Public License for more details. ** ** You should have received a copy of the GNU Lesser General Public ** License along with this library; if not, write to the Free Software ** Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 ** USA, or contact Ralf S. Engelschall . ** ** pth_ring.c: Pth ring data structure */ /* ``Unix was not designed to stop people from doing stupid things, because that would also stop them from doing clever things.'' --Doug Gwyn */ /* * This is a "ring" data structure, a special case of a list. It is * implemented through double-chained nodes. The link structure is part * of the nodes, i.e. no extra memory is required for the ring itself * and the ring can contain as many nodes as fit into memory. The main * advantage of using a ring instead of a plain list is to make the ring * operations easier (less special cases!). The ring is usually used * in Pth to represent a "set" of something. All operations are O(1), * except for the check whether a node is part of the ring (which is * O(N)). */ #include "pth_p.h" /* initialize ring; O(1) */ intern void pth_ring_init(pth_ring_t *r) { if (r == NULL) return; r->r_hook = NULL; r->r_nodes = 0; return; } /* return number of nodes in ring; O(1) */ #if cpp #define pth_ring_elements(r) \ ((r) == NULL ? (-1) : (r)->r_nodes) #endif /* return first node in ring; O(1) */ #if cpp #define pth_ring_first(r) \ ((r) == NULL ? NULL : (r)->r_hook) #endif /* return last node in ring; O(1) */ #if cpp #define pth_ring_last(r) \ ((r) == NULL ? NULL : ((r)->r_hook == NULL ? NULL : (r)->r_hook->rn_prev)) #endif /* walk to next node in ring; O(1) */ #if cpp #define pth_ring_next(r, rn) \ (((r) == NULL || (rn) == NULL) ? NULL : ((rn)->rn_next == (r)->r_hook ? NULL : (rn)->rn_next)) #endif /* walk to previous node in ring; O(1) */ #if cpp #define pth_ring_prev(r, rn) \ (((r) == NULL || (rn) == NULL) ? NULL : ((rn)->rn_prev == (r)->r_hook->rn_prev ? NULL : (rn)->rn_prev)) #endif /* insert node into ring; O(1) */ #if cpp #define pth_ring_insert(r, rn) \ pth_ring_append((r), (rn)) #endif /* insert node after a second node in ring; O(1) */ intern void pth_ring_insert_after(pth_ring_t *r, pth_ringnode_t *rn1, pth_ringnode_t *rn2) { if (r == NULL || rn1 == NULL || rn2 == NULL) return; rn2->rn_prev = rn1; rn2->rn_next = rn1->rn_next; rn2->rn_prev->rn_next = rn2; rn2->rn_next->rn_prev = rn2; r->r_nodes++; return; } /* insert node before a second node in ring; O(1) */ intern void pth_ring_insert_before(pth_ring_t *r, pth_ringnode_t *rn1, pth_ringnode_t *rn2) { if (r == NULL || rn1 == NULL || rn2 == NULL) return; rn2->rn_next = rn1; rn2->rn_prev = rn1->rn_prev; rn2->rn_prev->rn_next = rn2; rn2->rn_next->rn_prev = rn2; r->r_nodes++; return; } /* delete an node from ring; O(1) */ intern void pth_ring_delete(pth_ring_t *r, pth_ringnode_t *rn) { if (r == NULL || rn == NULL) return; if (r->r_hook == rn && rn->rn_prev == rn && rn->rn_next == rn) r->r_hook = NULL; else { if (r->r_hook == rn) r->r_hook = rn->rn_next; rn->rn_prev->rn_next = rn->rn_next; rn->rn_next->rn_prev = rn->rn_prev; } r->r_nodes--; return; } /* prepend an node to ring; O(1) */ intern void pth_ring_prepend(pth_ring_t *r, pth_ringnode_t *rn) { if (r == NULL || rn == NULL) return; if (r->r_hook == NULL) { r->r_hook = rn; rn->rn_next = rn; rn->rn_prev = rn; } else { rn->rn_next = r->r_hook; rn->rn_prev = r->r_hook->rn_prev; rn->rn_next->rn_prev = rn; rn->rn_prev->rn_next = rn; r->r_hook = rn; } r->r_nodes++; return; } /* append an node to ring; O(1) */ intern void pth_ring_append(pth_ring_t *r, pth_ringnode_t *rn) { if (r == NULL || rn == NULL) return; if (r->r_hook == NULL) { r->r_hook = rn; rn->rn_next = rn; rn->rn_prev = rn; } else { rn->rn_next = r->r_hook; rn->rn_prev = r->r_hook->rn_prev; rn->rn_next->rn_prev = rn; rn->rn_prev->rn_next = rn; } r->r_nodes++; return; } /* treat ring as stack: push node onto stack; O(1) */ #if cpp #define pth_ring_push(r, rn) \ pth_ring_prepend((r), (rn)) #endif /* treat ring as stack: pop node from stack; O(1) */ intern pth_ringnode_t *pth_ring_pop(pth_ring_t *r) { pth_ringnode_t *rn; rn = pth_ring_first(r); if (rn != NULL) pth_ring_delete(r, rn); return rn; } /* treat ring as queue: favorite a node in the ring; O(1) */ intern int pth_ring_favorite(pth_ring_t *r, pth_ringnode_t *rn) { if (r == NULL) return FALSE; if (r->r_hook == NULL) return FALSE; /* element is perhaps already at ring hook */ if (r->r_hook == rn) return TRUE; /* move to hook of ring */ pth_ring_delete(r, rn); pth_ring_prepend(r, rn); return TRUE; } /* treat ring as queue: enqueue node; O(1) */ #if cpp #define pth_ring_enqueue(r, rn) \ pth_ring_prepend((r), (rn)) #endif /* treat ring as queue: dequeue node; O(1) */ intern pth_ringnode_t *pth_ring_dequeue(pth_ring_t *r) { pth_ringnode_t *rn; rn = pth_ring_last(r); if (rn != NULL) pth_ring_delete(r, rn); return rn; } /* check whether node is contained in ring; O(n) */ intern int pth_ring_contains(pth_ring_t *r, pth_ringnode_t *rns) { pth_ringnode_t *rn; int rc; if (r == NULL || rns == NULL) return pth_error(FALSE, EINVAL); rc = FALSE; rn = r->r_hook; if (rn != NULL) { do { if (rn == rns) { rc = TRUE; break; } rn = rn->rn_next; } while (rn != r->r_hook); } return rc; }