/* ** Act - Abstract Container Type Library ** Copyright (c) 1999-2001 Ralf S. Engelschall ** ** This file is part of Act, a library for dealing with Abstract ** Container Types which can be found at http://www.ossp.org/pkg/act/. ** ** Permission to use, copy, modify, and distribute this software for ** any purpose with or without fee is hereby granted, provided that ** the above copyright notice and this permission notice appear in all ** copies. ** ** THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED ** WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF ** MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHORS AND COPYRIGHT HOLDERS AND THEIR ** CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, ** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT ** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF ** USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ** OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ** OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF ** SUCH DAMAGE. ** ** act_hash_fct.c: hash functions */ /* ** This is a large collection of more or less reasonable hash functions ** for use in conjunction with hash table lookups. One should not use ** these functions for cryptography, of course. They do only fulfill the ** (weaker) requirements of the hash table lookup discipline: ** ** 1. the function must be deterministic and stateless ** 2. the function must be very fast to compute ** 3. the function must distribute the keys very good ** ** Every function in this piece of source has the following signature: ** ** act_uint32_t act_hash_fct_(act_uint8_t *key, act_size_t len) ** ** This means that every function takes a pointer to the key data ** (accessed byte-wise) plus the key length (in bytes) and gives back an ** integer at least 32 bit in size (ANSI C requires `long' to be greater ** than `int' and `int' to be greater than `char', so `long' is at least ** 32 bits if one assumes that only 2^k aligned sizes exist). ** ** That a hash function causes collisions is clear already from the ** famous Birthday Paradoxon (if 23 people are in a room, the chance ** is already over 50% that the birthday of two people falls onto the ** same day of the year; or in oder words: if you hash 23 keys into 365 ** buckets you already have to expect a collision). ** ** Usually there are a gazillion more possible keys than buckets, so ** the best any hash function can do is map an equal number of those ** gazillion keys to each bucket. The number of collisions you get is ** expected to follow the Chi^2 distribution. ** ** Here's how Chi^2 is computed: ** 1. Lookup: b = total number of buckets ** 2. Lookup: k = total number of keys ** 3. Lookup: b_i = number of buckets which have i keys ** 4. Compute: p = k/b (the expected number of keys per bucket) ** 5. Compute: Chi^2 = sum (over all i) (b_i*((i-p)^2)/p) ** ** The distribution is expected to have a result close to b, i.e., ** within 3sqrt(b) of b. Chi^2 measures are usually reported in units of ** standard deviations. That is, if the formula above gives b+c*sqrt(b), ** they report c, and c is expected to be between -3 and 3. ** ** For comparing the hash functions (including the calculation of Chi^2) ** run `make test-hash-fct' which compiles the test suite at the end ** of this source. The order of writing down of the hash functions in ** this source follows the results of the comparisons, i.e. the hash ** functions are ordered strongest to weakest. On a Pentium-II/800 ** under FreeBSD 4.3 the table looks approximately as following: ** ** +-----------------------------------------------------------------------------+ ** | Hash Func Time Coll00 Coll55 CollNN Used Min Max Diff Chi2/S Chi2/B | ** + ---------- ------ ------ ------ ------ ----- ---- ---- ---- ------- ------- + ** | DJBX33A 0.62 0 0 0 85.80 0 9 9 0.19 2.72 | ** | DJBX33X 0.61 0 0 0 86.30 0 7 7 -2.24 -0.79 | ** | JEDI 0.65 0 0 0 87.90 0 7 7 0.13 -1.68 | ** | VOCONG 0.84 0 0 0 86.40 0 7 7 -0.92 -0.95 | ** | CDT 0.99 0 0 0 88.50 0 7 7 0.35 -2.09 | ** | JOTCL 0.85 0 0 0 85.50 0 11 11 -2.12 2.84 | ** | BJDDJ 1.17 0 0 0 87.20 0 7 7 1.90 -1.93 | ** | CRC32 1.48 0 0 0 86.40 0 9 9 0.85 0.44 | ** | TEADM 1.99 0 0 32 86.60 0 7 7 -0.70 -2.15 | ** | CPOAAT 1.16 0 0 0 85.20 0 8 8 0.70 2.02 | ** | FNV 2.05 0 0 0 85.80 0 8 8 -0.79 0.82 | ** | OZSDBM 1.18 999000 0 2 85.30 0 8 8 0.47 0.85 | ** | KAZLIB 2.71 0 0 0 85.50 0 8 8 7.74! 2.75 | ** | BUZHASH 1.38 30256 30256 976 86.90 0 8 8 -1.80 1.07 | ** | PEARSON 2.69 3160 5238 0 85.30 0 9 9 -1.64 1.80 | ** | RIFKIN 1.23 999000 124000 10754 86.00 0 9 9 0.85 0.63 | ** | ASU 1.56 0 0 0 85.50 0 7 7 441.58! -1.33 | ** | HOLUB 1.64 999000 82170 2 87.70 0 8 8 441.17! -2.31 | ** | CBU 0.56 999000 967272 2834 86.20 0 8 8 216.29! 0.73 | ** | CVS 1.64 999000 82170 2 87.70 0 8 8 441.17! -2.31 | ** +-----------------------------------------------------------------------------+ ** ** For further reading on the topic, start at Bob Jenkins ``Hashing ** Frequently Asked Questions'' and ``Hash Evaluation'' Paper: ** o http://burtleburtle.net/bob/hash/hashfaq.html ** o http://burtleburtle.net/bob/hash/evahash.html */ #include "act.h" #include "act_p.h" /* * DJBX33A (Daniel J. Bernstein, Times 33 with Addition) * * This is Daniel J. Bernstein's popular `times 33' hash function as * posted by him years ago on comp.lang.c. It basically uses a function * like ``hash(i) = hash(i-1) * 33 + str[i]''. This is one of the best * known hash functions for strings. Because it is both computed very * fast and distributes very well. * * The magic of number 33, i.e. why it works better than many other * constants, prime or not, has never been adequately explained by * anyone. So I try an explanation: if one experimentally tests all * multipliers between 1 and 256 (as RSE did now) one detects that even * numbers are not useable at all. The remaining 128 odd numbers * (except for the number 1) work more or less all equally well. They * all distribute in an acceptable way and this way fill a hash table * with an average percent of approx. 86%. * * If one compares the Chi^2 values of the variants, the number 33 not * even has the best value. But the number 33 and a few other equally * good numbers like 17, 31, 63, 127 and 129 have nevertheless a great * advantage to the remaining numbers in the large set of possible * multipliers: their multiply operation can be replaced by a faster * operation based on just one shift plus either a single addition * or subtraction operation. And because a hash function has to both * distribute good _and_ has to be very fast to compute, those few * numbers should be preferred and seems to be the reason why Daniel J. * Bernstein also preferred it. * * Below there are two variants: the original variant with only the * multiplication optimized via bit shifts and additionally a variant * which has the hash unrolled eight times for speed. Both additionally * are optimized for speed even more by unrolling the loop. */ intern act_uint32_t act_hash_fct_djbx33a( register act_uint8_t *key, register act_size_t len) { register act_uint32_t hash = 5381; #ifdef ACT_NON_OPTIMIZE while (len-- > 0) hash = ((hash << 5) + hash) + *key++; #else /* variant with the hash unrolled eight times */ for (; len >= 8; len -= 8) { hash = ((hash << 5) + hash) + *key++; hash = ((hash << 5) + hash) + *key++; hash = ((hash << 5) + hash) + *key++; hash = ((hash << 5) + hash) + *key++; hash = ((hash << 5) + hash) + *key++; hash = ((hash << 5) + hash) + *key++; hash = ((hash << 5) + hash) + *key++; hash = ((hash << 5) + hash) + *key++; } switch (len) { case 7: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */ case 6: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */ case 5: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */ case 4: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */ case 3: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */ case 2: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */ case 1: hash = ((hash << 5) + hash) + *key++; break; default: /* case 0: */ break; } #endif return hash; } /* * DJBX33X (Daniel J. Bernstein, Times 33 with Exclusive-Or) * * This is Daniel J. Bernstein's revised `times 33' hash function * which is currently favored by him (see his CDB package): it uses * exclusive-or instead of addition to merge in the key information. * It behaves mostly equal to the DJBX33A hash, i.e. it is also a very * good hash (both fast and with good distribution). It can be found for * instance in his CDB package (see cdb_hash.c). */ intern act_uint32_t act_hash_fct_djbx33x( register act_uint8_t *key, register act_size_t len) { register act_uint32_t hash = 5381; #ifdef ACT_NON_OPTIMIZE while (len-- > 0) hash = ((hash << 5) + hash) ^ *key++; #else /* variant with the hash unrolled eight times */ for (; len >= 8; len -= 8) { hash = ((hash << 5) + hash) ^ *key++; hash = ((hash << 5) + hash) ^ *key++; hash = ((hash << 5) + hash) ^ *key++; hash = ((hash << 5) + hash) ^ *key++; hash = ((hash << 5) + hash) ^ *key++; hash = ((hash << 5) + hash) ^ *key++; hash = ((hash << 5) + hash) ^ *key++; hash = ((hash << 5) + hash) ^ *key++; } switch (len) { case 7: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */ case 6: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */ case 5: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */ case 4: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */ case 3: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */ case 2: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */ case 1: hash = ((hash << 5) + hash) ^ *key++; break; default: /* case 0: */ break; } #endif return hash; } /* * JEDI (Frank Denis ) * * The Jedi hash is a variant of Daniel Bernstein's `times 33' hash * function (using exclusive-or), which Frank 'Jedi' Denis created for * a patch to Linux's ReiserFS. It assumes that the key is a filesystem * path and this way attempts to achieve a better distribution by * hashing from right to left and by treating the key as a text string. * So, this variant of DJB's original hash function is intended for * hashing filesystem path like strings. Below there are two variants: * the original variant from Frank Denis and additionally a variant * which has the hash unrolled eight times for speed. */ intern act_uint32_t act_hash_fct_jedi( register act_uint8_t *key, register act_size_t len) { register act_uint32_t hash = 5381; #ifdef ACT_NON_OPTIMIZE while (len-- > 0) hash = ((hash << 5) + hash) ^ (key[len] - '0'); #else /* variant with the hash unrolled eight times */ while (len >= 8) { hash = ((hash << 5) + hash) ^ (key[--len] - '0'); hash = ((hash << 5) + hash) ^ (key[--len] - '0'); hash = ((hash << 5) + hash) ^ (key[--len] - '0'); hash = ((hash << 5) + hash) ^ (key[--len] - '0'); hash = ((hash << 5) + hash) ^ (key[--len] - '0'); hash = ((hash << 5) + hash) ^ (key[--len] - '0'); hash = ((hash << 5) + hash) ^ (key[--len] - '0'); hash = ((hash << 5) + hash) ^ (key[--len] - '0'); } switch (len) { case 7: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */ case 6: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */ case 5: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */ case 4: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */ case 3: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */ case 2: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */ case 1: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); break; default: /* case 0: */ break; } #endif return hash ^ ((hash & 0x7f) << 24); } /* * VOCONG (Phong Vo, Congruential Hash) * * This is Phong Vo 's linear congruential hash. * It's a very fast one and (although of its simplicity) it distributes * surprisingly well. It can be found for instance in the Berkeley-DB 3.x * package (hash/hash_func.c). */ intern act_uint32_t act_hash_fct_vocong( register act_uint8_t *key, register act_size_t len) { register act_uint32_t hash = 0; while (len-- > 0) hash = hash * 0x63c63cd9 + 0x9c39c33d + *key++; return hash; } /* * CDT (Container Data Type, Congruential Hash) * * This is the linear congruential hash ``h * 17 + c + 97531'' as used * in the AT&T's Cdt library. It is very fast and distributes very well. * For details see Cdt's cdt.h file. */ intern act_uint32_t act_hash_fct_cdt( register act_uint8_t *key, register act_size_t len) { register act_uint32_t hash = 0; while (len-- > 0) hash = (hash << 4) + hash + *key++ + 97531; return hash; } /* * JOTCL (John Ousterhout, Tcl) * * This is John Ousterhout's hash from his Tcl 8.2's tclHash.c. He * said, he has chosen this particular hash (multiply by 9 and add new * character) because of the following reasons: * 1. Multiplying by 10 is perfect for keys that are decimal strings, * and multiplying by 9 is just about as good. * 2. Times-9 is (shift-left-3) plus (old). This means that each * character's bits hang around in the low-order bits of the hash * value for ever, plus they spread fairly rapidly up to the * high-order bits to fill out the hash value. This seems works well * both for decimal and non-decimal strings * In fact this is a fast hash, but the original version which * initializes the hash with 0 causes collissions for keys with * increasing same bytes. So our variant here uses the golden ratio (but * every arbitrary value != 0 should work) instead. */ intern act_uint32_t act_hash_fct_jotcl( register act_uint8_t *key, register act_size_t len) { register act_uint32_t hash = 0x9e3779b9; while (len-- > 0) hash = ((hash << 3) + hash) + *key++; return hash; } /* * BJDDJ (Bob Jenkins, Dr. Dobbs Journal) * * This is a very complex but also very good hash function, as proposed * in the March'97 issue of Dr. Dobbs Journal (DDJ) by Bob Jenkins (see * http://burtleburtle.net/bob/hash/doobs.html for online version). He * showed that this hash function has both very good distribution and * performance and our own hash function comparison confirmed this. The * only difference to the original function of B.J. here is that our * version doesn't provide the `level' (= previous hash) argument for * consistency reasons with the other hash functions (i.e. same function * signature). It can be definetely recommended as a good general * purpuse hash function. */ intern act_uint32_t act_hash_fct_bjddj( register act_uint8_t *k, register act_size_t length) { register act_uint32_t a,b,c,len; /* some abbreviations */ #define ub4 act_uint32_t #define mix(a,b,c) { \ a -= b; a -= c; a ^= (c>>13); \ b -= c; b -= a; b ^= (a<< 8); \ c -= a; c -= b; c ^= (b>>13); \ a -= b; a -= c; a ^= (c>>12); \ b -= c; b -= a; b ^= (a<<16); \ c -= a; c -= b; c ^= (b>> 5); \ a -= b; a -= c; a ^= (c>> 3); \ b -= c; b -= a; b ^= (a<<10); \ c -= a; c -= b; c ^= (b>>15); \ } /* setup the internal state */ len = length; a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */ c = 0; /* handle most of the key */ while (len >= 12) { a += (k[0] +((ub4)k[1]<<8) +((ub4)k[ 2]<<16) +((ub4)k[ 3]<<24)); b += (k[4] +((ub4)k[5]<<8) +((ub4)k[ 6]<<16) +((ub4)k[ 7]<<24)); c += (k[8] +((ub4)k[9]<<8) +((ub4)k[10]<<16) +((ub4)k[11]<<24)); mix(a,b,c); k += 12; len -= 12; } /* handle the last 11 bytes */ c += length; switch(len) { /* all the case statements fall through */ case 11: c+=((ub4)k[10]<<24); case 10: c+=((ub4)k[ 9]<<16); case 9 : c+=((ub4)k[ 8]<< 8); /* the first byte of c is reserved for the length */ case 8 : b+=((ub4)k[ 7]<<24); case 7 : b+=((ub4)k[ 6]<<16); case 6 : b+=((ub4)k[ 5]<< 8); case 5 : b+=k[4]; case 4 : a+=((ub4)k[ 3]<<24); case 3 : a+=((ub4)k[ 2]<<16); case 2 : a+=((ub4)k[ 1]<< 8); case 1 : a+=k[0]; /* case 0: nothing left to add */ } mix(a,b,c); #undef ub4 #undef mix /* report the result */ return c; } /* * CRC32 (Cyclic Redundancy Check 32-Bit) * * This hash function is based on the CRC-32 (Cyclic Redundancy Check * with 32 Bit) algorithm as invented by Mark Adler. It one of the hash * functions with medium performance but with very good distribution. So * it can be considered as a rock solid general purpose hash function. */ intern act_uint32_t act_hash_fct_crc32( register act_uint8_t *key, register act_size_t len) { static act_uint32_t tab[256] = { 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L, 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L, 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L, 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL, 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L, 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L, 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L, 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL, 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L, 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL, 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L, 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L, 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L, 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL, 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL, 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L, 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL, 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L, 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L, 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L, 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL, 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L, 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L, 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL, 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L, 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L, 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L, 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L, 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L, 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL, 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL, 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L, 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L, 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL, 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL, 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L, 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL, 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L, 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL, 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L, 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL, 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L, 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L, 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL, 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L, 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L, 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L, 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L, 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L, 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L, 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL, 0x2d02ef8dL }; register act_uint32_t hash; hash = 0xffffffff; while (len-- > 0) hash = tab[(hash ^ *key++) & 0xff] ^ (hash >> 8); hash ^= 0xffffffff; return hash; } /* * CPOAAT (Colin Plumb, One-At-A-Time) * * This hash function was derived by Bob Jenkins from requirements posed * by Colin Plumb. It was named `One At A Time' by Bob Jenkins. Analysis * suggested that there were no funnels in this hash, i.e. every input * bit affects every output bit. Additionally it's a very fast hash and * only the original function (which started with "hash = 0") disliked * progressing keys a little bit (which doesn't hurt in practice). Our * variant above uses the value of the DJBX33A hash (but any arbitrary * value should work) and this way avoid this, too. */ intern act_uint32_t act_hash_fct_cpoaat( register act_uint8_t *ptr, register act_size_t len) { register act_uint32_t hash = 5381; while (len-- > 0) { hash += *ptr++; hash += (hash << 10); hash ^= (hash >> 6); } hash += (hash << 3); hash ^= (hash >> 11); hash += (hash << 15); return hash; } /* * TEADM (Tiny Encryption Algorithm & Davis-Meyer) * * The TEA hash is a keyed 32-bit hash function using Tiny Encryption * Algorithm (TEA) in a Davis-Meyer function (H0 = Key, Hi = E * Mi(Hi-1) + Hi-1). For details see Applied Cryptography, 2nd * edition, p448. It was found in ReiserFS's hashing code as written * by Jeremy Fitzhardinge . This hash is actually a * cryptographically strong hash and this way not really optimimal for * use inside hash data structures. Because it is slower than most of * the other functions, although it distributes very well. */ intern act_uint32_t act_hash_fct_teadm( register act_uint8_t *key, register act_size_t len) { act_uint32_t k[] = { 0x9464a485, 0x542e1a94, 0x3e846bff, 0xb75bcfc3 }; act_uint32_t h0 = k[0], h1 = k[1]; act_uint32_t a, b, c, d; act_uint32_t pad; int i; #define TEAFULLROUNDS 10 /* 32 is overkill, 16 is strong crypto */ #define TEAPARTROUNDS 6 /* 6 gets complete mixing */ /* a, b, c, d - data; h0, h1 - accumulated hash */ #define TEACORE(rounds) \ do { \ act_uint32_t sum = 0; \ int n = rounds; \ act_uint32_t b0, b1; \ b0 = h0; \ b1 = h1; \ do { \ sum += 0x9E3779B9; \ b0 += ((b1 << 4)+a) ^ (b1+sum) ^ ((b1 >> 5)+b); \ b1 += ((b0 << 4)+c) ^ (b0+sum) ^ ((b0 >> 5)+d); \ } while(--n); \ h0 += b0; \ h1 += b1; \ } while(0) pad = (act_uint32_t)len | ((act_uint32_t)len << 8); pad |= pad << 16; while (len >= 16) { a = (act_uint32_t)key[ 0] | (act_uint32_t)key[ 1] << 8 | (act_uint32_t)key[ 2] << 16| (act_uint32_t)key[ 3] << 24; b = (act_uint32_t)key[ 4] | (act_uint32_t)key[ 5] << 8 | (act_uint32_t)key[ 6] << 16| (act_uint32_t)key[ 7] << 24; c = (act_uint32_t)key[ 8] | (act_uint32_t)key[ 9] << 8 | (act_uint32_t)key[10] << 16| (act_uint32_t)key[11] << 24; d = (act_uint32_t)key[12] | (act_uint32_t)key[13] << 8 | (act_uint32_t)key[14] << 16| (act_uint32_t)key[15] << 24; TEACORE(TEAPARTROUNDS); len -= 16; key += 16; } if (len >= 12) { if (len >= 16) *(int *)0 = 0; a = (act_uint32_t)key[ 0] | (act_uint32_t)key[ 1] << 8 | (act_uint32_t)key[ 2] << 16| (act_uint32_t)key[ 3] << 24; b = (act_uint32_t)key[ 4] | (act_uint32_t)key[ 5] << 8 | (act_uint32_t)key[ 6] << 16| (act_uint32_t)key[ 7] << 24; c = (act_uint32_t)key[ 8] | (act_uint32_t)key[ 9] << 8 | (act_uint32_t)key[10] << 16| (act_uint32_t)key[11] << 24; d = pad; for (i = 12; i < len; i++) { d <<= 8; d |= key[i]; } } else if (len >= 8) { if (len >= 12) *(int *)0 = 0; a = (act_uint32_t)key[ 0] | (act_uint32_t)key[ 1] << 8 | (act_uint32_t)key[ 2] << 16| (act_uint32_t)key[ 3] << 24; b = (act_uint32_t)key[ 4] | (act_uint32_t)key[ 5] << 8 | (act_uint32_t)key[ 6] << 16| (act_uint32_t)key[ 7] << 24; c = d = pad; for (i = 8; i < len; i++) { c <<= 8; c |= key[i]; } } else if (len >= 4) { if (len >= 8) *(int *)0 = 0; a = (act_uint32_t)key[ 0] | (act_uint32_t)key[ 1] << 8 | (act_uint32_t)key[ 2] << 16| (act_uint32_t)key[ 3] << 24; b = c = d = pad; for (i = 4; i < len; i++) { b <<= 8; b |= key[i]; } } else { if (len >= 4) *(int *)0 = 0; a = b = c = d = pad; for (i = 0; i < len; i++) { a <<= 8; a |= key[i]; } } TEACORE(TEAFULLROUNDS); return h0^h1; } /* * FNV (Glenn Fowler, Landon Curt Noll, Phong Vo) * * This is the Fowler-Noll-Vo (FNV) hash. The basis of the hash algorithm * was taken from an idea sent by Email to the IEEE Posix P1003.2 * mailing list from Phong Vo and Glenn Fowler * . Landon Curt Noll later * improved on their algorithm. The magic is in the interesting relationship * between the special prime 16777619 (2^24 + 403) and 2^32 and 2^8 (although * the description of the magic I couldn't find any longer). This hash * produces only very few collisions for real world keys and works well on * both numbers and strings. But it's one of the slower hashes. The variant * below uses the recommended FNV-1 initialization. For more details see * http://www.isthe.com/chongo/tech/comp/fnv/. */ intern act_uint32_t act_hash_fct_fnv( register act_uint8_t *key, register act_size_t len) { register act_uint32_t hash = 0x811c9dc5L; while (len-- > 0) { hash *= 0x01000193L; hash ^= (act_uint32_t)(*key++); } return hash; } /* * OZSDBM (Ozan 'Oz' Yigit, SDBM) * * This is the hashing function which was originally designed * by Ozan (Oz) Yigit for his popular SDBM library (see hash.c * in http://www.cs.yorku.ca/~oz/sdbm.bun). It works relatively * well in scrambling bits. The actual function is in the form * ``hash(i) = hash(i-1) * 65599 + str[i]''. What is used here is the * faster version as found for instance in GNU awk (see array.c in * ftp://ftp.gnu.org/gnu/gawk/gawk-3.0.4.tar.gz), because 65599 = 2^6 + * 2^16- 1. The magic constant 65599 was picked out of thin air by Oz, * but turns out to be a prime. The number 65587 was claimed to be even * better by him, but was not actually used in SDBM. The optimized * variant below is very ugly to read, but fast. It breaks the key * up into 8 byte units. On the first time through the loop get the * "leftover bytes" (len % 8). On every other iteration, perform 8 * HASHC's so we handle all 8 bytes. Essentially, this saves 7 compare & * branch instructions. */ intern act_uint32_t act_hash_fct_ozsdbm( register act_uint8_t *ptr, register act_size_t len) { register act_uint32_t hash = 0; #ifdef ACT_NON_OPTIMIZE while (len-- > 0) hash = ((hash << 6) + (hash << 16) - hash) + *ptr++; #else if (len > 0) { register int loop = (len + 8 - 1) >> 3; #define HASHC hash = ((hash << 6) + (hash << 16) - hash) + *ptr++; switch (len & (8 - 1)) { case 0: do { HASHC; case 7: HASHC; case 6: HASHC; case 5: HASHC; case 4: HASHC; case 3: HASHC; case 2: HASHC; case 1: HASHC; } while (--loop); } } #endif return hash; } /* * KAZLIB (Kaz Kylheku, Hash Library) * * This is Kaz Kylheku's hash function as used in his kazlib (see * http://users.footprints.net/~kaz/kazlib.html) package. It has a very * good distribution, but unfortunately it is one of the slowest hash * functions. */ intern act_uint32_t act_hash_fct_kazlib( register act_uint8_t *key, register act_size_t len) { static act_uint32_t tab[] = { 0x49848f1bL, 0xe6255dbaL, 0x36da5bdcL, 0x47bf94e9L, 0x8cbcce22L, 0x559fc06aL, 0xd268f536L, 0xe10af79aL, 0xc1af4d69L, 0x1d2917b5L, 0xec4c304dL, 0x9ee5016cL, 0x69232f74L, 0xfead7bb3L, 0xe9089ab6L, 0xf012f6aeL, }; register act_uint32_t hash = 0; register act_uint8_t k; while (len-- > 0) { k = *key++; hash ^= tab[(k + hash) & 0x0f]; hash = (hash << 1) | (hash >> 31); /* hash &= 0xffffffffL; removed, because not necessary in Act */ hash ^= tab[((k >> 4) + hash) & 0x0f]; hash = (hash << 2) | (hash >> 30); /* hash &= 0xffffffffL; removed, because not necessary in Act */ } return hash; } /* * BUZHASH (Robert 'BUZ' Uzgalis, Hash) * * This is Robert 'BUZ' Uzgalis's hash function he published as * `buzhash' (see http://serve.net/buz/) The main difference in our * version is just that we use only 32 bits while the original uses * actually 64 bits (both in the table and the output). For the table * I've just stripped of the upper 32 bits of the values in the original * Java implementation. The table consists of random values, but if you * write down the values one per line, then in each bit column there are both * 128 one and 128 zero bits (which is for a good statistically expected * distribution). */ intern act_uint32_t act_hash_fct_buzhash( register act_uint8_t *key, register act_size_t len) { static act_uint32_t tab[256] = { 0x043a46fL, 0x6e7eac19L, 0xcf055952L, 0xf010101L, 0x128e8a64L, 0xadcfef2L, 0x42e20c6cL, 0xb1095c58L, 0x5361d67L, 0xc7a4b199L, 0x2f24df2L, 0xd0549327L, 0x9a3b180fL, 0xb21f2ebL, 0x3cff1325L, 0x7b575b9L, 0x8a23b7e2L, 0xfbd9091dL, 0x34dbdf9L, 0xb68d6313L, 0x6d06b93L, 0xeba548afL, 0xacc917c9L, 0xdffbcfaL, 0xd301f3b5L, 0x1663592L, 0xf6ce9e4fL, 0x13206f02L, 0x2dc50f7L, 0x3e880a87L, 0xbbf065dL, 0x8fabcb6dL, 0x9116f2d0L, 0xb9af152L, 0xe85aec09L, 0xc4fc987L, 0xa9ce535eL, 0xb849398eL, 0xd2e70d8L, 0xae19b18fL, 0x7d5ebeaL, 0xfdc60511L, 0x3fcc44afL, 0x4a68f17L, 0xa09aafdcL, 0x94a3294L, 0xae1de1b9L, 0xfd1c1dd0L, 0x8b98ee6L, 0xd357dabcL, 0xe8826aaL, 0xec4055f1L, 0x4c34f8a9L, 0x170e402L, 0x55eca72eL, 0x1bde03fL, 0x25e368ffL, 0x0b120f4aL, 0x028f728L, 0x14df0433L, 0xdd3601eL, 0xaa052772L, 0xe427f736L, 0x3e35041L, 0x69b76914L, 0x3b3c01cL, 0x307d6fafL, 0xc221deccL, 0x4281a5dL, 0xa2fcaba7L, 0x66d4a9fL, 0x02c4be93L, 0x332ecb2fL, 0x6f74ab0L, 0x2f1dfe8fL, 0x152a6f9L, 0xc2ea9be7L, 0x86c1899eL, 0x3bdefd7L, 0x7512901bL, 0x94a1fbdL, 0x3d47ff0dL, 0xc6f78e66L, 0xe2d25d2L, 0x0134d573L, 0x1023afaL, 0xc8c66c0aL, 0xd54c12edL, 0xf6689f0L, 0x67f7677aL, 0x67b9867L, 0xcd5b2341L, 0x1733f9bcL, 0xbc867bfL, 0xd9418811L, 0x7499083L, 0xdf9b12e8L, 0xec3e0928L, 0x6d08914L, 0x758e524aL, 0x000f455L, 0x1a786c79L, 0x8e012db1L, 0xd7b42faL, 0x25cda5f0L, 0xfba9220L, 0x605a11e1L, 0x6cb23e6cL, 0xb483b87L, 0xb997ee22L, 0x77f7362L, 0x2c1768d4L, 0x1673f9adL, 0x11fe93dL, 0x04e1cde4L, 0x0747250L, 0x005b5db6L, 0xbbaf4817L, 0x379e196L, 0xaca98701L, 0x24bde84L, 0x9fabbcb6L, 0x4a97882bL, 0x59a1fd8L, 0x7ec7ce10L, 0x780f244L, 0x2f61b3ffL, 0xa1c71c95L, 0xb2d765cL, 0xf988514dL, 0xa98e840L, 0x1411bc42L, 0xaa4482c2L, 0xd9d47daL, 0xf128a622L, 0x5ba5647L, 0x18962dbdL, 0x70f6d242L, 0x7635d81L, 0x43753680L, 0xaeaab4cL, 0x810f2220L, 0x65d9c0b1L, 0x8356c94L, 0x30f27e2fL, 0xd16b440L, 0x35771070L, 0xe9bc2336L, 0x935d2fdL, 0xf4720cffL, 0x975173cL, 0x520e2405L, 0xa9e73ce2L, 0x62623a7L, 0x18e26104L, 0x0e4f061L, 0x464cfee9L, 0xccdc534aL, 0xf192a14L, 0x94b71649L, 0xaeb0675L, 0x4647e040L, 0x397f1004L, 0x4ec8dfcL, 0xbfd0006bL, 0x5b4ed0fL, 0xba6bccbeL, 0x2e03fe1bL, 0x6f0b363L, 0xc3392942L, 0x2d6cf9cL, 0xce55fec5L, 0x09b40463L, 0x14a310bL, 0x7bbcf76bL, 0xc249602L, 0xc4e99555L, 0xde625355L, 0xc1aa55dL, 0x3eaced91L, 0x3b9ff1eL, 0x8d381f2dL, 0xbcdb5ba8L, 0xf7792bcL, 0xf05a19a0L, 0x60ffb0cL, 0x1a68fa68L, 0x02b1ce1aL, 0xa610474L, 0xd1a0fecbL, 0x90e8533L, 0x23f84d95L, 0x83c110c4L, 0xf90588dL, 0x9ee04455L, 0x40504baL, 0xfee93369L, 0x85804099L, 0xbe5d01bL, 0x4b3865d6L, 0xa5c108fL, 0x9654f2dcL, 0xb0d19772L, 0x406152bL, 0x7be2b8a5L, 0x92967adL, 0x6308e597L, 0xe874e16aL, 0xd2e274fL, 0x6007fc05L, 0x230fc39L, 0x99144de1L, 0x8dcc89b3L, 0x4161bfdL, 0x498cd270L, 0xdbbd9f8L, 0x5628d7d0L, 0x205d9ea4L, 0x214ebfaL, 0xd1ebedafL, 0x237002fL, 0x147e6e5eL, 0x4483ebd3L, 0x9b05aa6L, 0x3517c363L, 0x8e9e8a2L, 0x19d89df6L, 0x62defab3L, 0x4f4e201L, 0x57c48f3fL, 0x8e6e5dcL, 0x5fa6d27aL, 0x1dc3078eL, 0xca367f9L, 0xfdcbb7ccL, 0xf36414bL, 0x1d3a034fL, 0x122d654fL, 0xb336078L, 0x3a8b9600L, 0xb5f1484L, 0x3ccfb7c6L, 0x2ff89cf1L, 0x09919a6L, 0xfa83287eL, 0x694b7cdL, 0x77df5aeaL, 0x944508ccL, 0x581fbb8L, 0x728a05cbL, 0x4a31712L, 0xc2f6acfaL, 0x6e560b10L, 0xd8d7ce1L, 0x0d2b2adeL, 0x0bbaa936L }; register act_uint32_t hash = 0xe9ae3b8aL /* random init */; while (len-- > 0) hash = ((hash<<1)^((hash>>31)&1)) ^ tab[*key++]; return hash; } /* * PEARSON (Peter K. Pearson) * * This historical hash function was published by Peter K. Pearson. * He claimed this algorithm worked well for text strings (with 8-bit * bytes). The used table is an arbitrary permutation of the values * 0x00..0xff I've calculated with a small Perl script for ACT. * Additionally the version below contains actually four Pearson hash * functions combined, one for each byte of the 32 bit hash in order * to really generate a 32 bit hash (and not just an 8 bit hash as the * original). As a result its now unfortunately a slower hash (because * of the four byte output) but distributes real world keys very well. * OTOH progressing keys consisting of the same bytes it dislikes very * much and then produces lots of collisions (but that doesn't matter * usually). */ intern act_uint32_t act_hash_fct_pearson( register act_uint8_t *key, register act_size_t len) { static unsigned char ptab[256] = { 0xd0, 0x24, 0x61, 0x1f, 0x65, 0xfb, 0xe1, 0x12, 0x64, 0xa7, 0xd9, 0x7f, 0x49, 0xf1, 0xfc, 0x89, 0xd8, 0x57, 0x03, 0xda, 0x4a, 0x4e, 0xc8, 0xb9, 0x42, 0x7b, 0x44, 0x88, 0x3e, 0x6e, 0x1d, 0xc2, 0x96, 0x5d, 0x10, 0x67, 0x2b, 0x31, 0x5f, 0x2c, 0xfe, 0x4f, 0x01, 0x7d, 0xf6, 0xe7, 0x15, 0x54, 0xaa, 0x29, 0x81, 0x0b, 0xde, 0xc1, 0xc0, 0x16, 0x35, 0xf2, 0xc5, 0x43, 0x22, 0x41, 0xc9, 0x5a, 0xc6, 0x6a, 0x04, 0xb8, 0x94, 0xac, 0xc4, 0x1c, 0x36, 0x71, 0xaf, 0x17, 0xfd, 0xe6, 0x20, 0x56, 0x38, 0xbf, 0x55, 0xdf, 0x3d, 0x98, 0x40, 0x09, 0x0d, 0x33, 0xb7, 0x90, 0x76, 0xca, 0xff, 0x9c, 0x73, 0x7e, 0xa6, 0x6d, 0xcb, 0x39, 0xc3, 0xd5, 0xce, 0xa4, 0xc7, 0x27, 0xcf, 0x58, 0x1b, 0xb2, 0x8d, 0x11, 0x0c, 0x0f, 0x34, 0xb4, 0x69, 0xd6, 0x2f, 0xa5, 0x51, 0x32, 0x37, 0x6f, 0x8c, 0xcd, 0xba, 0x5e, 0x82, 0x1a, 0xa9, 0x46, 0x91, 0x93, 0xbc, 0xbe, 0xe2, 0x4b, 0x18, 0xdc, 0xeb, 0x3c, 0x21, 0x47, 0x70, 0x4d, 0xae, 0xf9, 0xee, 0xa3, 0xec, 0x97, 0x08, 0xab, 0xad, 0xbd, 0x48, 0xb0, 0xa0, 0xb3, 0x68, 0xd7, 0xe4, 0xe3, 0x79, 0x4c, 0x95, 0x8b, 0xb1, 0xf8, 0x2a, 0xa8, 0x9a, 0x30, 0xf3, 0xf5, 0xd3, 0x50, 0xf0, 0x9e, 0x63, 0x9d, 0x72, 0x3f, 0xd2, 0x85, 0x60, 0x3b, 0x0e, 0x6b, 0x19, 0x52, 0xe0, 0xef, 0x13, 0x6c, 0xb5, 0x8e, 0x00, 0x14, 0x8a, 0x1e, 0x06, 0xa2, 0xfa, 0x0a, 0x8f, 0x80, 0x86, 0x07, 0xed, 0x84, 0x92, 0x45, 0x26, 0xf7, 0x75, 0xd4, 0x83, 0x7a, 0xdd, 0x62, 0x7c, 0x9b, 0xe5, 0xa1, 0x2e, 0xdb, 0xea, 0x25, 0x5c, 0x87, 0x74, 0x5b, 0x99, 0x9f, 0xe8, 0x3a, 0x66, 0x02, 0x59, 0x28, 0xb6, 0xcc, 0x53, 0xf4, 0xe9, 0x05, 0xd1, 0x78, 0xbb, 0x77, 0x2d, 0x23 }; register unsigned char h1,h2,h3,h4; register unsigned char c; act_uint32_t hash; h1 = 0x00; h2 = 0x33; h3 = 0x99; h4 = 0xaa; /* arbitrary random init */ while (len-- > 0) { c = *key++; h1 = ptab[h1 ^ c]; h2 = ptab[h2 ^ c]; h3 = ptab[h3 ^ c]; h4 = ptab[h4 ^ c]; } hash = (h4 << 24) ^ (h3 << 16) ^ (h2 << 8) ^ h1; return hash; } /* * RIFKIN (Jon Rifkin Hash) * * This is the hash function from Jon Rifkin * as found in a similar form in hash.c inside his ipaudit package. * It's an average hash function. Neither very good nor very bad. */ intern act_uint32_t act_hash_fct_rifkin( register act_uint8_t *key, register act_size_t len) { register act_uint32_t hash = 0; register int ishift = 0; while (len-- > 0) { hash ^= (((act_uint32_t)(*key++)) << ishift); ishift += 8; if (ishift >= 32) ishift = 0; } hash = hash + (hash << 16) - (hash >> 16) - 1; return hash; } /* * ASU (Aho, Sethi, Ullman) * * This is the hashing algorithm as proposed by Aho, Seti and Ullmann in * their algorithm books. It is not very fast, but distributes well. */ intern act_uint32_t act_hash_fct_asu( register act_uint8_t *key, register act_size_t len) { register act_uint32_t hash; register act_uint32_t g; hash = (act_uint32_t)len; while (len-- > 0) { hash = (hash << 4) + *key++; g = hash & 0xf0000000; if (g != 0) hash = (hash ^ (g >> 24)) ^ g; } return hash; } /* * HOLUB (Holub Generic Hash) * * This is Weinberger's generic hash algorithm, as adapted and published * by Holub. It was extracted from PHP4's mod_session. It is actually a * not one of the best hash functions in the set, but might have some * particular uses. */ intern act_uint32_t act_hash_fct_holub( register act_uint8_t *key, register act_size_t len) { register act_uint32_t hash; register act_uint32_t i; hash = 0; while (len-- > 0) { hash = (hash << 4) + *key++; if ((i = hash & 0xf0000000) != 0) hash = (hash ^ (i >> 24)) & 0x0fffffff; } return hash; } /* * CBU (CanterBury University) * * McKenzie et all concluded in a paper (B J McKenzie, R Harries & T * Bell, Selecting a hashing algorithm, Software practice & experience * 20, 2 (Feb 1990), 209-224.) that for hashing program identifiers, the * following linear hash function is a good one. It was developed at * the CanterBury University, in Christchurch, New Zealand. It is also * used in the GNU RCS package (see rcs-5.7.tar.gz and there rcslex.c). * It is very fast, but horribly dislikes progressing keys and also * showed a bad distribution for real world keys. So take this hash very * carefully and test whether it works for your data. */ intern act_uint32_t act_hash_fct_cbu( register act_uint8_t *key, register act_size_t len) { register act_uint32_t hash = 0; while (len-- > 0) hash = (hash << 2) + *key++; return hash; } /* * CVS (Concurrent Version System) * * This is the hash function found in CVS 1.10.x (see src/hash.c). It * is the same as the published elf_hash(3) function for use in the * UNIX ELF format for object files. It works fine for binary keys but * very bad for strings where it distributes horribly and has a bad * Chi^2 value. The reason might be that our tests use larger (non-prime * sized) hash tables while CVS actually uses this function with a 151 * byte long hash table only. So for special situations this hash might * be reasonable. But as a general purpose hash function for arbitrary * hash table lookups it is bad. Additionally it hates progressing keys. * So this hash is only useful if one really knows the keys one has to * hash and also tests whether this hash works for them. */ intern act_uint32_t act_hash_fct_cvs( register act_uint8_t *key, register act_size_t len) { register act_uint32_t hash = 0; register act_uint32_t g; while (len-- > 0) { hash = (hash << 4) + *key++; /* rotation */ if ((g = (hash & 0xf0000000)) != 0) hash = (hash ^ (g >> 24)) ^ g; } return hash; } /* ** ====================================================================== ** Hash Function Test and Comparison Suite ** ====================================================================== */ #ifdef ACT_TEST #include #include #include #include typedef act_uint32_t ub4; #define hashsize(n) ((ub4)1<<(n)) #define hashmask(n) (hashsize(n)-1) /* table of hash functions */ typedef struct { char *name; act_hash_fct_t hash; struct { double t; long coll00; long coll55; long collNN; double used; long min; long max; long delta; double s_chi2; double b_chi2; } stat; } table_entry; #define EMPTY_STAT { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } table_entry table[] = { { "DJBX33A", act_hash_fct_djbx33a, EMPTY_STAT }, { "DJBX33X", act_hash_fct_djbx33x, EMPTY_STAT }, { "JEDI", act_hash_fct_jedi, EMPTY_STAT }, { "VOCONG", act_hash_fct_vocong, EMPTY_STAT }, { "CDT", act_hash_fct_cdt, EMPTY_STAT }, { "JOTCL", act_hash_fct_jotcl, EMPTY_STAT }, { "BJDDJ", act_hash_fct_bjddj, EMPTY_STAT }, { "CRC32", act_hash_fct_crc32, EMPTY_STAT }, { "TEADM", act_hash_fct_teadm, EMPTY_STAT }, { "CPOAAT", act_hash_fct_cpoaat, EMPTY_STAT }, { "FNV", act_hash_fct_fnv, EMPTY_STAT }, { "OZSDBM", act_hash_fct_ozsdbm, EMPTY_STAT }, { "KAZLIB", act_hash_fct_kazlib, EMPTY_STAT }, { "BUZHASH", act_hash_fct_buzhash, EMPTY_STAT }, { "PEARSON", act_hash_fct_pearson, EMPTY_STAT }, { "RIFKIN", act_hash_fct_rifkin, EMPTY_STAT }, { "ASU", act_hash_fct_asu, EMPTY_STAT }, { "HOLUB", act_hash_fct_holub, EMPTY_STAT }, { "CBU", act_hash_fct_cbu, EMPTY_STAT }, { "CVS", act_hash_fct_cvs, EMPTY_STAT }, { NULL, NULL } }; /* used for timings */ void driver1(table_entry *te) { char buf[15000]; act_uint32_t h; struct timeval tv1, tv2; double td; int i; for (i = 0; i < 15000; i++) buf[i] = i; gettimeofday(&tv1, NULL); for (i = 0; i < 15000; i++) h = te->hash(buf,i); gettimeofday(&tv2, NULL); td = ((double)(tv2.tv_sec*1000000 + tv2.tv_usec) / 1000000) - ((double)(tv1.tv_sec*1000000 + tv1.tv_usec) / 1000000); te->stat.t = td; return; } /* check for problems with nulls */ int driver2b(table_entry *te, act_uint8_t *buf) { act_uint32_t brain[1000]; act_uint32_t h; int eq; int i, j; for (i = 0; i < 1000; i++) brain[i] = te->hash(buf, i); eq = 0; for (i = 0; i < 1000; i++) { for (j = 0; j < 1000; j++) { if (i == j) continue; if (brain[i] == brain[j]) eq++; } } return eq; } void driver2(table_entry *te) { unsigned char buf[1000]; int i; int eq; for (i = 0; i < 1000; i++) buf[i] = 0; eq = driver2b(te, buf); te->stat.coll00 = eq; for (i = 0; i < 1000; i++) buf[i] = 0x55; eq = driver2b(te, buf); te->stat.coll55 = eq; for (i = 0; i < 1000; i++) buf[i] = i; eq = driver2b(te, buf); te->stat.collNN = eq; return; } /* check for distribution */ void driver3(table_entry *te, char *file, int linewise) { #define TABLESIZE 1000 unsigned char buf[1024]; act_uint32_t htab[TABLESIZE]; act_uint32_t h; act_uint32_t min, max, exp; FILE *fp; int k; int i, j; int b; int nr; double p; double chi2; int bi; for (i = 0; i < TABLESIZE; i++) htab[i] = 0; if ((fp = fopen(file, "r")) == NULL) { perror("fopen"); return; } min = 0; max = 0; k = 0; if (linewise) { while (fgets(buf, sizeof(buf), fp) != NULL) { h = te->hash(buf, strlen(buf)) % TABLESIZE; htab[h]++; min++; k++; if (k > TABLESIZE*2) break; } } else { while ((b = fread(buf, 1, 10, fp)) > 0 && !feof(fp)) { h = te->hash(buf, b) % TABLESIZE; htab[h]++; min++; k++; if (k > TABLESIZE*2) break; } } fclose(fp); nr = 0; for (i = 0; i < TABLESIZE; i++) { min = _M_MIN(min, htab[i]); max = _M_MAX(max, htab[i]); if (htab[i] == 0) nr++; } /* Calculate Chi^2 value */ p = ((double)k)/TABLESIZE; chi2 = 0; for (i = 0; i < k; i++) { bi = 0; for (j = 0; j < TABLESIZE; j++) if (htab[j] == i) bi++; chi2 += (bi * ((double)((i-p)*(i-p))) / p); } chi2 -= TABLESIZE; chi2 /= sqrt((double)TABLESIZE); if (linewise) te->stat.s_chi2 = chi2; else te->stat.b_chi2 = chi2; te->stat.used = (nr == 0 ? 100 : 100-(((double)nr)/TABLESIZE)*100); te->stat.min = min; te->stat.max = max; te->stat.delta = max-min; return; } /* the driver program */ int main(int argc, char *argv[]) { int i; system("gzip -1 /tmp/x"); printf("Testing:"); for (i = 0; table[i].name != NULL; i++) { printf(" %s", table[i].name); fflush(stdout); driver1(&table[i]); driver2(&table[i]); driver3(&table[i], "/usr/share/dict/words", 1); driver3(&table[i], "/tmp/x", 0); } printf("\n"); fflush(stdout); printf("+-----------------------------------------------------------------------------+\n"); printf("| Hash Func Time Coll00 Coll55 CollNN Used Min Max Diff Chi2/S Chi2/B |\n"); printf("+ ---------- ------ ------ ------ ------ ----- ---- ---- ---- ------- ------- +\n"); for (i = 0; table[i].name != NULL; i++) { printf("| %-10s %6.2f %6d %6d %6d %5.2f %4d %4d %4d %7.2f%c%7.2f%c|\n", table[i].name, table[i].stat.t, table[i].stat.coll00, table[i].stat.coll55, table[i].stat.collNN, table[i].stat.used, table[i].stat.min, table[i].stat.max, table[i].stat.delta, table[i].stat.s_chi2, (table[i].stat.s_chi2 > 3 || table[i].stat.s_chi2 < -3) ? '!' : ' ', table[i].stat.b_chi2, (table[i].stat.b_chi2 > 3 || table[i].stat.b_chi2 < -3) ? '!' : ' '); } printf("+-----------------------------------------------------------------------------+\n"); return 0; } #endif /* ACT_TEST */