ossp-pkg/act/act_hash_fct.c
/*
** OSSP act - Abstract Container Types
** Copyright (c) 1999-2003 Ralf S. Engelschall <rse@engelschall.com>
** Copyright (c) 1999-2003 The OSSP Project <http://www.ossp.org/>
**
** This file is part of OSSP act, an abstract container type library
** which can be found at http://www.ossp.org/pkg/lib/act/.
**
** Permission to use, copy, modify, and distribute this software for
** any purpose with or without fee is hereby granted, provided that
** the above copyright notice and this permission notice appear in all
** copies.
**
** THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
** WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
** MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHORS AND COPYRIGHT HOLDERS AND THEIR
** CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
** SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
** LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
** USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
** ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
** OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
** OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
** SUCH DAMAGE.
**
** act_hash_fct.c: hash functions
*/
/*
** This is a large collection of more or less reasonable hash functions
** for use in conjunction with hash table lookups. One should not use
** these functions for cryptography, of course. They do only fulfill the
** (weaker) requirements of the hash table lookup discipline:
**
** 1. the function must be deterministic and stateless
** 2. the function must be very fast to compute
** 3. the function must distribute the keys very good
**
** Every function in this piece of source has the following signature:
**
** act_uint32_t act_hash_fct_<name>(act_uint8_t *key, act_size_t len)
**
** This means that every function takes a pointer to the key data
** (accessed byte-wise) plus the key length (in bytes) and gives back an
** integer at least 32 bit in size (ANSI C requires `long' to be greater
** than `int' and `int' to be greater than `char', so `long' is at least
** 32 bits if one assumes that only 2^k aligned sizes exist).
**
** That a hash function causes collisions is clear already from the
** famous Birthday Paradoxon (if 23 people are in a room, the chance
** is already over 50% that the birthday of two people falls onto the
** same day of the year; or in oder words: if you hash 23 keys into 365
** buckets you already have to expect a collision).
**
** Usually there are a gazillion more possible keys than buckets, so
** the best any hash function can do is to map an equal number of those
** gazillion keys to each bucket. The number of collisions you get is
** expected to follow the Chi^2 distribution.
**
** Here's how Chi^2 is computed:
** 1. Lookup: b = total number of buckets
** 2. Lookup: k = total number of keys
** 3. Lookup: b_i = number of buckets which have i keys
** 4. Compute: p = k/b (the expected number of keys per bucket)
** 5. Compute: Chi^2 = sum (over all i) (b_i*((i-p)^2)/p)
**
** The distribution is expected to have a result close to b, i.e.,
** within 3*sqrt(b) of b. Chi^2 measures are usually reported in units of
** standard deviations. That is, if the formula above gives b+c*sqrt(b),
** they report c, and c is expected to be between -3 and 3.
**
** For comparing the hash functions (including the calculation of Chi^2)
** run `make test-hash-fct' which compiles the test suite at the end
** of this source. The order of writing down of the hash functions in
** this source follows the results of the comparisons, i.e. the hash
** functions are ordered strongest to weakest. On a Pentium-II/800
** under FreeBSD 4.3 the table looks approximately as following:
**
** +-----------------------------------------------------------------------------+
** | Hash Func Time Coll00 Coll55 CollNN Used Min Max Diff Chi2/S Chi2/B |
** + ---------- ------ ------ ------ ------ ----- ---- ---- ---- ------- ------- +
** | DJBX33A 0.62 0 0 0 85.80 0 9 9 0.19 2.72 |
** | DJBX33X 0.61 0 0 0 86.30 0 7 7 -2.24 -0.79 |
** | JEDI 0.65 0 0 0 87.90 0 7 7 0.13 -1.68 |
** | VOCONG 0.84 0 0 0 86.40 0 7 7 -0.92 -0.95 |
** | CDT 0.99 0 0 0 88.50 0 7 7 0.35 -2.09 |
** | JOTCL 0.85 0 0 0 85.50 0 11 11 -2.12 2.84 |
** | BJDDJ 1.17 0 0 0 87.20 0 7 7 1.90 -1.93 |
** | CRC32 1.48 0 0 0 86.40 0 9 9 0.85 0.44 |
** | TEADM 1.99 0 0 32 86.60 0 7 7 -0.70 -2.15 |
** | CPOAAT 1.16 0 0 0 85.20 0 8 8 0.70 2.02 |
** | FNV 2.05 0 0 0 85.80 0 8 8 -0.79 0.82 |
** | OZSDBM 1.18 999000 0 2 85.30 0 8 8 0.47 0.85 |
** | KAZLIB 2.71 0 0 0 85.50 0 8 8 7.74! 2.75 |
** | BUZHASH 1.38 30256 30256 976 86.90 0 8 8 -1.80 1.07 |
** | PEARSON 2.69 3160 5238 0 85.30 0 9 9 -1.64 1.80 |
** | RIFKIN 1.23 999000 124000 10754 86.00 0 9 9 0.85 0.63 |
** | ASU 1.56 0 0 0 85.50 0 7 7 441.58! -1.33 |
** | HOLUB 1.64 999000 82170 2 87.70 0 8 8 441.17! -2.31 |
** | CBU 0.56 999000 967272 2834 86.20 0 8 8 216.29! 0.73 |
** | CVS 1.64 999000 82170 2 87.70 0 8 8 441.17! -2.31 |
** +-----------------------------------------------------------------------------+
**
** For further reading on the topic, start at Bob Jenkins ``Hashing
** Frequently Asked Questions'' and ``Hash Evaluation'' Paper:
** o http://burtleburtle.net/bob/hash/hashfaq.html
** o http://burtleburtle.net/bob/hash/evahash.html
*/
#include "act.h"
#include "act_p.h"
/*
* DJBX33A (Daniel J. Bernstein, Times 33 with Addition)
*
* This is Daniel J. Bernstein's popular `times 33' hash function as
* posted by him years ago on comp.lang.c. It basically uses a function
* like ``hash(i) = hash(i-1) * 33 + str[i]''. This is one of the best
* known hash functions for strings. Because it is both computed very
* fast and distributes very well.
*
* The magic of number 33, i.e. why it works better than many other
* constants, prime or not, has never been adequately explained by
* anyone. So I try an explanation: if one experimentally tests all
* multipliers between 1 and 256 (as RSE did now) one detects that even
* numbers are not useable at all. The remaining 128 odd numbers
* (except for the number 1) work more or less all equally well. They
* all distribute in an acceptable way and this way fill a hash table
* with an average percent of approx. 86%.
*
* If one compares the Chi^2 values of the variants, the number 33 not
* even has the best value. But the number 33 and a few other equally
* good numbers like 17, 31, 63, 127 and 129 have nevertheless a great
* advantage to the remaining numbers in the large set of possible
* multipliers: their multiply operation can be replaced by a faster
* operation based on just one shift plus either a single addition
* or subtraction operation. And because a hash function has to both
* distribute good _and_ has to be very fast to compute, those few
* numbers should be preferred and seems to be the reason why Daniel J.
* Bernstein also preferred it.
*
* Below there are two variants: the original variant with only the
* multiplication optimized via bit shifts and additionally a variant
* which has the hash unrolled eight times for speed. Both additionally
* are optimized for speed even more by unrolling the loop.
*/
intern act_uint32_t
act_hash_fct_djbx33a(
register act_uint8_t *key,
register act_size_t len)
{
register act_uint32_t hash = 5381;
#ifdef ACT_NON_OPTIMIZE
while (len-- > 0)
hash = ((hash << 5) + hash) + *key++;
#else
/* variant with the hash unrolled eight times */
for (; len >= 8; len -= 8) {
hash = ((hash << 5) + hash) + *key++;
hash = ((hash << 5) + hash) + *key++;
hash = ((hash << 5) + hash) + *key++;
hash = ((hash << 5) + hash) + *key++;
hash = ((hash << 5) + hash) + *key++;
hash = ((hash << 5) + hash) + *key++;
hash = ((hash << 5) + hash) + *key++;
hash = ((hash << 5) + hash) + *key++;
}
switch (len) {
case 7: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
case 6: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
case 5: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
case 4: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
case 3: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
case 2: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
case 1: hash = ((hash << 5) + hash) + *key++; break;
default: /* case 0: */ break;
}
#endif
return hash;
}
/*
* DJBX33X (Daniel J. Bernstein, Times 33 with Exclusive-Or)
*
* This is Daniel J. Bernstein's revised `times 33' hash function
* which is currently favored by him (see his CDB package): it uses
* exclusive-or instead of addition to merge in the key information.
* It behaves mostly equal to the DJBX33A hash, i.e. it is also a very
* good hash (both fast and with good distribution). It can be found for
* instance in his CDB package (see cdb_hash.c).
*/
intern act_uint32_t
act_hash_fct_djbx33x(
register act_uint8_t *key,
register act_size_t len)
{
register act_uint32_t hash = 5381;
#ifdef ACT_NON_OPTIMIZE
while (len-- > 0)
hash = ((hash << 5) + hash) ^ *key++;
#else
/* variant with the hash unrolled eight times */
for (; len >= 8; len -= 8) {
hash = ((hash << 5) + hash) ^ *key++;
hash = ((hash << 5) + hash) ^ *key++;
hash = ((hash << 5) + hash) ^ *key++;
hash = ((hash << 5) + hash) ^ *key++;
hash = ((hash << 5) + hash) ^ *key++;
hash = ((hash << 5) + hash) ^ *key++;
hash = ((hash << 5) + hash) ^ *key++;
hash = ((hash << 5) + hash) ^ *key++;
}
switch (len) {
case 7: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */
case 6: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */
case 5: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */
case 4: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */
case 3: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */
case 2: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */
case 1: hash = ((hash << 5) + hash) ^ *key++; break;
default: /* case 0: */ break;
}
#endif
return hash;
}
/*
* JEDI (Frank Denis <i@4u.net>)
*
* The Jedi hash is a variant of Daniel Bernstein's `times 33' hash
* function (using exclusive-or), which Frank 'Jedi' Denis created for
* a patch to Linux's ReiserFS. It assumes that the key is a filesystem
* path and this way attempts to achieve a better distribution by
* hashing from right to left and by treating the key as a text string.
* So, this variant of DJB's original hash function is intended for
* hashing filesystem path like strings. Below there are two variants:
* the original variant from Frank Denis and additionally a variant
* which has the hash unrolled eight times for speed.
*/
intern act_uint32_t
act_hash_fct_jedi(
register act_uint8_t *key,
register act_size_t len)
{
register act_uint32_t hash = 5381;
#ifdef ACT_NON_OPTIMIZE
while (len-- > 0)
hash = ((hash << 5) + hash) ^ (key[len] - '0');
#else
/* variant with the hash unrolled eight times */
while (len >= 8) {
hash = ((hash << 5) + hash) ^ (key[--len] - '0');
hash = ((hash << 5) + hash) ^ (key[--len] - '0');
hash = ((hash << 5) + hash) ^ (key[--len] - '0');
hash = ((hash << 5) + hash) ^ (key[--len] - '0');
hash = ((hash << 5) + hash) ^ (key[--len] - '0');
hash = ((hash << 5) + hash) ^ (key[--len] - '0');
hash = ((hash << 5) + hash) ^ (key[--len] - '0');
hash = ((hash << 5) + hash) ^ (key[--len] - '0');
}
switch (len) {
case 7: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */
case 6: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */
case 5: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */
case 4: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */
case 3: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */
case 2: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */
case 1: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); break;
default: /* case 0: */ break;
}
#endif
return hash ^ ((hash & 0x7f) << 24);
}
/*
* VOCONG (Phong Vo, Congruential Hash)
*
* This is Phong Vo <kpv@research.att.com>'s linear congruential hash.
* It's a very fast one and (although of its simplicity) it distributes
* surprisingly well. It can be found for instance in the Berkeley-DB 3.x
* package (hash/hash_func.c).
*/
intern act_uint32_t
act_hash_fct_vocong(
register act_uint8_t *key,
register act_size_t len)
{
register act_uint32_t hash = 0;
while (len-- > 0)
hash = hash * 0x63c63cd9 + 0x9c39c33d + *key++;
return hash;
}
/*
* CDT (Container Data Type, Congruential Hash)
*
* This is the linear congruential hash ``h * 17 + c + 97531'' as used
* in the AT&T's Cdt library. It is very fast and distributes very well.
* For details see Cdt's cdt.h file.
*/
intern act_uint32_t
act_hash_fct_cdt(
register act_uint8_t *key,
register act_size_t len)
{
register act_uint32_t hash = 0;
while (len-- > 0)
hash = (hash << 4) + hash + *key++ + 97531;
return hash;
}
/*
* JOTCL (John Ousterhout, Tcl)
*
* This is John Ousterhout's hash from his Tcl 8.2's tclHash.c. He
* said, he has chosen this particular hash (multiply by 9 and add new
* character) because of the following reasons:
* 1. Multiplying by 10 is perfect for keys that are decimal strings,
* and multiplying by 9 is just about as good.
* 2. Times-9 is (shift-left-3) plus (old). This means that each
* character's bits hang around in the low-order bits of the hash
* value for ever, plus they spread fairly rapidly up to the
* high-order bits to fill out the hash value. This seems works well
* both for decimal and non-decimal strings
* In fact this is a fast hash, but the original version which
* initializes the hash with 0 causes collissions for keys with
* increasing same bytes. So our variant here uses the golden ratio (but
* every arbitrary value != 0 should work) instead.
*/
intern act_uint32_t
act_hash_fct_jotcl(
register act_uint8_t *key,
register act_size_t len)
{
register act_uint32_t hash = 0x9e3779b9;
while (len-- > 0)
hash = ((hash << 3) + hash) + *key++;
return hash;
}
/*
* BJDDJ (Bob Jenkins, Dr. Dobbs Journal)
*
* This is a very complex but also very good hash function, as proposed
* in the March'97 issue of Dr. Dobbs Journal (DDJ) by Bob Jenkins (see
* http://burtleburtle.net/bob/hash/doobs.html for online version). He
* showed that this hash function has both very good distribution and
* performance and our own hash function comparison confirmed this. The
* only difference to the original function of B.J. here is that our
* version doesn't provide the `level' (= previous hash) argument for
* consistency reasons with the other hash functions (i.e. same function
* signature). It can be definetely recommended as a good general
* purpose hash function.
*/
intern act_uint32_t
act_hash_fct_bjddj(
register act_uint8_t *k,
register act_size_t length)
{
register act_uint32_t a,b,c,len;
/* some abbreviations */
#define ub4 act_uint32_t
#define mix(a,b,c) { \
a -= b; a -= c; a ^= (c>>13); \
b -= c; b -= a; b ^= (a<< 8); \
c -= a; c -= b; c ^= (b>>13); \
a -= b; a -= c; a ^= (c>>12); \
b -= c; b -= a; b ^= (a<<16); \
c -= a; c -= b; c ^= (b>> 5); \
a -= b; a -= c; a ^= (c>> 3); \
b -= c; b -= a; b ^= (a<<10); \
c -= a; c -= b; c ^= (b>>15); \
}
/* setup the internal state */
len = length;
a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
c = 0;
/* handle most of the key */
while (len >= 12) {
a += (k[0] +((ub4)k[1]<<8) +((ub4)k[ 2]<<16) +((ub4)k[ 3]<<24));
b += (k[4] +((ub4)k[5]<<8) +((ub4)k[ 6]<<16) +((ub4)k[ 7]<<24));
c += (k[8] +((ub4)k[9]<<8) +((ub4)k[10]<<16) +((ub4)k[11]<<24));
mix(a,b,c);
k += 12; len -= 12;
}
/* handle the last 11 bytes */
c += length;
switch(len) {
/* all the case statements fall through */
case 11: c+=((ub4)k[10]<<24);
case 10: c+=((ub4)k[ 9]<<16);
case 9 : c+=((ub4)k[ 8]<< 8);
/* the first byte of c is reserved for the length */
case 8 : b+=((ub4)k[ 7]<<24);
case 7 : b+=((ub4)k[ 6]<<16);
case 6 : b+=((ub4)k[ 5]<< 8);
case 5 : b+=k[4];
case 4 : a+=((ub4)k[ 3]<<24);
case 3 : a+=((ub4)k[ 2]<<16);
case 2 : a+=((ub4)k[ 1]<< 8);
case 1 : a+=k[0];
/* case 0: nothing left to add */
}
mix(a,b,c);
#undef ub4
#undef mix
/* report the result */
return c;
}
/*
* CRC32 (Cyclic Redundancy Check 32-Bit)
*
* This hash function is based on the CRC-32 (Cyclic Redundancy Check
* with 32 Bit) algorithm as invented by Mark Adler. It one of the hash
* functions with medium performance but with very good distribution. So
* it can be considered as a rock solid general purpose hash function.
*/
intern act_uint32_t
act_hash_fct_crc32(
register act_uint8_t *key,
register act_size_t len)
{
static act_uint32_t tab[256] = {
0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
0x2d02ef8dL
};
register act_uint32_t hash;
hash = 0xffffffff;
while (len-- > 0)
hash = tab[(hash ^ *key++) & 0xff] ^ (hash >> 8);
hash ^= 0xffffffff;
return hash;
}
/*
* CPOAAT (Colin Plumb, One-At-A-Time)
*
* This hash function was derived by Bob Jenkins from requirements posed
* by Colin Plumb. It was named `One At A Time' by Bob Jenkins. Analysis
* suggested that there were no funnels in this hash, i.e. every input
* bit affects every output bit. Additionally it's a very fast hash and
* only the original function (which started with "hash = 0") disliked
* progressing keys a little bit (which doesn't hurt in practice). Our
* variant above uses the value of the DJBX33A hash (but any arbitrary
* value should work) and this way avoid this, too.
*/
intern act_uint32_t
act_hash_fct_cpoaat(
register act_uint8_t *ptr,
register act_size_t len)
{
register act_uint32_t hash = 5381;
while (len-- > 0) {
hash += *ptr++;
hash += (hash << 10);
hash ^= (hash >> 6);
}
hash += (hash << 3);
hash ^= (hash >> 11);
hash += (hash << 15);
return hash;
}
/*
* TEADM (Tiny Encryption Algorithm & Davis-Meyer)
*
* The TEA hash is a keyed 32-bit hash function using Tiny Encryption
* Algorithm (TEA) in a Davis-Meyer function (H0 = Key, Hi = E
* Mi(Hi-1) + Hi-1). For details see Applied Cryptography, 2nd
* edition, p448. It was found in ReiserFS's hashing code as written
* by Jeremy Fitzhardinge <jeremy@zip.com.au>. This hash is actually a
* cryptographically strong hash and this way not really optimimal for
* use inside hash data structures. Because it is slower than most of
* the other functions, although it distributes very well.
*/
intern act_uint32_t
act_hash_fct_teadm(
register act_uint8_t *key,
register act_size_t len)
{
act_uint32_t k[] = { 0x9464a485, 0x542e1a94, 0x3e846bff, 0xb75bcfc3 };
act_uint32_t h0 = k[0], h1 = k[1];
act_uint32_t a, b, c, d;
act_uint32_t pad;
int i;
#define TEAFULLROUNDS 10 /* 32 is overkill, 16 is strong crypto */
#define TEAPARTROUNDS 6 /* 6 gets complete mixing */
/* a, b, c, d - data; h0, h1 - accumulated hash */
#define TEACORE(rounds) \
do { \
act_uint32_t sum = 0; \
int n = rounds; \
act_uint32_t b0, b1; \
b0 = h0; \
b1 = h1; \
do { \
sum += 0x9E3779B9; \
b0 += ((b1 << 4)+a) ^ (b1+sum) ^ ((b1 >> 5)+b); \
b1 += ((b0 << 4)+c) ^ (b0+sum) ^ ((b0 >> 5)+d); \
} while(--n); \
h0 += b0; \
h1 += b1; \
} while(0)
pad = (act_uint32_t)len | ((act_uint32_t)len << 8);
pad |= pad << 16;
while (len >= 16) {
a = (act_uint32_t)key[ 0] |
(act_uint32_t)key[ 1] << 8 |
(act_uint32_t)key[ 2] << 16|
(act_uint32_t)key[ 3] << 24;
b = (act_uint32_t)key[ 4] |
(act_uint32_t)key[ 5] << 8 |
(act_uint32_t)key[ 6] << 16|
(act_uint32_t)key[ 7] << 24;
c = (act_uint32_t)key[ 8] |
(act_uint32_t)key[ 9] << 8 |
(act_uint32_t)key[10] << 16|
(act_uint32_t)key[11] << 24;
d = (act_uint32_t)key[12] |
(act_uint32_t)key[13] << 8 |
(act_uint32_t)key[14] << 16|
(act_uint32_t)key[15] << 24;
TEACORE(TEAPARTROUNDS);
len -= 16;
key += 16;
}
if (len >= 12) {
if (len >= 16)
*(int *)0 = 0;
a = (act_uint32_t)key[ 0] |
(act_uint32_t)key[ 1] << 8 |
(act_uint32_t)key[ 2] << 16|
(act_uint32_t)key[ 3] << 24;
b = (act_uint32_t)key[ 4] |
(act_uint32_t)key[ 5] << 8 |
(act_uint32_t)key[ 6] << 16|
(act_uint32_t)key[ 7] << 24;
c = (act_uint32_t)key[ 8] |
(act_uint32_t)key[ 9] << 8 |
(act_uint32_t)key[10] << 16|
(act_uint32_t)key[11] << 24;
d = pad;
for (i = 12; i < len; i++) {
d <<= 8;
d |= key[i];
}
}
else if (len >= 8) {
if (len >= 12)
*(int *)0 = 0;
a = (act_uint32_t)key[ 0] |
(act_uint32_t)key[ 1] << 8 |
(act_uint32_t)key[ 2] << 16|
(act_uint32_t)key[ 3] << 24;
b = (act_uint32_t)key[ 4] |
(act_uint32_t)key[ 5] << 8 |
(act_uint32_t)key[ 6] << 16|
(act_uint32_t)key[ 7] << 24;
c = d = pad;
for (i = 8; i < len; i++) {
c <<= 8;
c |= key[i];
}
}
else if (len >= 4) {
if (len >= 8)
*(int *)0 = 0;
a = (act_uint32_t)key[ 0] |
(act_uint32_t)key[ 1] << 8 |
(act_uint32_t)key[ 2] << 16|
(act_uint32_t)key[ 3] << 24;
b = c = d = pad;
for (i = 4; i < len; i++) {
b <<= 8;
b |= key[i];
}
}
else {
if (len >= 4)
*(int *)0 = 0;
a = b = c = d = pad;
for (i = 0; i < len; i++) {
a <<= 8;
a |= key[i];
}
}
TEACORE(TEAFULLROUNDS);
return h0^h1;
}
/*
* FNV (Glenn Fowler, Landon Curt Noll, Phong Vo)
*
* This is the Fowler-Noll-Vo (FNV) hash. The basis of the hash algorithm
* was taken from an idea sent by Email to the IEEE Posix P1003.2
* mailing list from Phong Vo <kpv@research.att.com> and Glenn Fowler
* <gsf@research.att.com>. Landon Curt Noll <chongo@toad.com> later
* improved on their algorithm. The magic is in the interesting relationship
* between the special prime 16777619 (2^24 + 403) and 2^32 and 2^8 (although
* the description of the magic I couldn't find any longer). This hash
* produces only very few collisions for real world keys and works well on
* both numbers and strings. But it's one of the slower hashes. The variant
* below uses the recommended FNV-1 initialization. For more details see
* http://www.isthe.com/chongo/tech/comp/fnv/.
*/
intern act_uint32_t
act_hash_fct_fnv(
register act_uint8_t *key,
register act_size_t len)
{
register act_uint32_t hash = 0x811c9dc5L;
while (len-- > 0) {
hash *= 0x01000193L;
hash ^= (act_uint32_t)(*key++);
}
return hash;
}
/*
* OZSDBM (Ozan 'Oz' Yigit, SDBM)
*
* This is the hashing function which was originally designed
* by Ozan (Oz) Yigit for his popular SDBM library (see hash.c
* in http://www.cs.yorku.ca/~oz/sdbm.bun). It works relatively
* well in scrambling bits. The actual function is in the form
* ``hash(i) = hash(i-1) * 65599 + str[i]''. What is used here is the
* faster version as found for instance in GNU awk (see array.c in
* ftp://ftp.gnu.org/gnu/gawk/gawk-3.0.4.tar.gz), because 65599 = 2^6 +
* 2^16- 1. The magic constant 65599 was picked out of thin air by Oz,
* but turns out to be a prime. The number 65587 was claimed to be even
* better by him, but was not actually used in SDBM. The optimized
* variant below is very ugly to read, but fast. It breaks the key
* up into 8 byte units. On the first time through the loop get the
* "leftover bytes" (len % 8). On every other iteration, perform 8
* HASHC's so we handle all 8 bytes. Essentially, this saves 7 compare &
* branch instructions.
*/
intern act_uint32_t
act_hash_fct_ozsdbm(
register act_uint8_t *ptr,
register act_size_t len)
{
register act_uint32_t hash = 0;
#ifdef ACT_NON_OPTIMIZE
while (len-- > 0)
hash = ((hash << 6) + (hash << 16) - hash) + *ptr++;
#else
if (len > 0) {
register int loop = (len + 8 - 1) >> 3;
#define HASHC hash = ((hash << 6) + (hash << 16) - hash) + *ptr++;
switch (len & (8 - 1)) {
case 0: do {
HASHC; case 7: HASHC;
case 6: HASHC; case 5: HASHC;
case 4: HASHC; case 3: HASHC;
case 2: HASHC; case 1: HASHC;
} while (--loop);
}
}
#endif
return hash;
}
/*
* KAZLIB (Kaz Kylheku, Hash Library)
*
* This is Kaz Kylheku's hash function as used in his kazlib (see
* http://users.footprints.net/~kaz/kazlib.html) package. It has a very
* good distribution, but unfortunately it is one of the slowest hash
* functions.
*/
intern act_uint32_t
act_hash_fct_kazlib(
register act_uint8_t *key,
register act_size_t len)
{
static act_uint32_t tab[] = {
0x49848f1bL, 0xe6255dbaL, 0x36da5bdcL, 0x47bf94e9L,
0x8cbcce22L, 0x559fc06aL, 0xd268f536L, 0xe10af79aL,
0xc1af4d69L, 0x1d2917b5L, 0xec4c304dL, 0x9ee5016cL,
0x69232f74L, 0xfead7bb3L, 0xe9089ab6L, 0xf012f6aeL,
};
register act_uint32_t hash = 0;
register act_uint8_t k;
while (len-- > 0) {
k = *key++;
hash ^= tab[(k + hash) & 0x0f];
hash = (hash << 1) | (hash >> 31);
/* hash &= 0xffffffffL; removed, because not necessary in Act */
hash ^= tab[((k >> 4) + hash) & 0x0f];
hash = (hash << 2) | (hash >> 30);
/* hash &= 0xffffffffL; removed, because not necessary in Act */
}
return hash;
}
/*
* BUZHASH (Robert 'BUZ' Uzgalis, Hash)
*
* This is Robert 'BUZ' Uzgalis's hash function he published as
* `buzhash' (see http://serve.net/buz/) The main difference in our
* version is just that we use only 32 bits while the original uses
* actually 64 bits (both in the table and the output). For the table
* I've just stripped of the upper 32 bits of the values in the original
* Java implementation. The table consists of random values, but if you
* write down the values one per line, then in each bit column there are both
* 128 one and 128 zero bits (which is for a good statistically expected
* distribution).
*/
intern act_uint32_t
act_hash_fct_buzhash(
register act_uint8_t *key,
register act_size_t len)
{
static act_uint32_t tab[256] = {
0x043a46fL, 0x6e7eac19L, 0xcf055952L, 0xf010101L, 0x128e8a64L,
0xadcfef2L, 0x42e20c6cL, 0xb1095c58L, 0x5361d67L, 0xc7a4b199L,
0x2f24df2L, 0xd0549327L, 0x9a3b180fL, 0xb21f2ebL, 0x3cff1325L,
0x7b575b9L, 0x8a23b7e2L, 0xfbd9091dL, 0x34dbdf9L, 0xb68d6313L,
0x6d06b93L, 0xeba548afL, 0xacc917c9L, 0xdffbcfaL, 0xd301f3b5L,
0x1663592L, 0xf6ce9e4fL, 0x13206f02L, 0x2dc50f7L, 0x3e880a87L,
0xbbf065dL, 0x8fabcb6dL, 0x9116f2d0L, 0xb9af152L, 0xe85aec09L,
0xc4fc987L, 0xa9ce535eL, 0xb849398eL, 0xd2e70d8L, 0xae19b18fL,
0x7d5ebeaL, 0xfdc60511L, 0x3fcc44afL, 0x4a68f17L, 0xa09aafdcL,
0x94a3294L, 0xae1de1b9L, 0xfd1c1dd0L, 0x8b98ee6L, 0xd357dabcL,
0xe8826aaL, 0xec4055f1L, 0x4c34f8a9L, 0x170e402L, 0x55eca72eL,
0x1bde03fL, 0x25e368ffL, 0x0b120f4aL, 0x028f728L, 0x14df0433L,
0xdd3601eL, 0xaa052772L, 0xe427f736L, 0x3e35041L, 0x69b76914L,
0x3b3c01cL, 0x307d6fafL, 0xc221deccL, 0x4281a5dL, 0xa2fcaba7L,
0x66d4a9fL, 0x02c4be93L, 0x332ecb2fL, 0x6f74ab0L, 0x2f1dfe8fL,
0x152a6f9L, 0xc2ea9be7L, 0x86c1899eL, 0x3bdefd7L, 0x7512901bL,
0x94a1fbdL, 0x3d47ff0dL, 0xc6f78e66L, 0xe2d25d2L, 0x0134d573L,
0x1023afaL, 0xc8c66c0aL, 0xd54c12edL, 0xf6689f0L, 0x67f7677aL,
0x67b9867L, 0xcd5b2341L, 0x1733f9bcL, 0xbc867bfL, 0xd9418811L,
0x7499083L, 0xdf9b12e8L, 0xec3e0928L, 0x6d08914L, 0x758e524aL,
0x000f455L, 0x1a786c79L, 0x8e012db1L, 0xd7b42faL, 0x25cda5f0L,
0xfba9220L, 0x605a11e1L, 0x6cb23e6cL, 0xb483b87L, 0xb997ee22L,
0x77f7362L, 0x2c1768d4L, 0x1673f9adL, 0x11fe93dL, 0x04e1cde4L,
0x0747250L, 0x005b5db6L, 0xbbaf4817L, 0x379e196L, 0xaca98701L,
0x24bde84L, 0x9fabbcb6L, 0x4a97882bL, 0x59a1fd8L, 0x7ec7ce10L,
0x780f244L, 0x2f61b3ffL, 0xa1c71c95L, 0xb2d765cL, 0xf988514dL,
0xa98e840L, 0x1411bc42L, 0xaa4482c2L, 0xd9d47daL, 0xf128a622L,
0x5ba5647L, 0x18962dbdL, 0x70f6d242L, 0x7635d81L, 0x43753680L,
0xaeaab4cL, 0x810f2220L, 0x65d9c0b1L, 0x8356c94L, 0x30f27e2fL,
0xd16b440L, 0x35771070L, 0xe9bc2336L, 0x935d2fdL, 0xf4720cffL,
0x975173cL, 0x520e2405L, 0xa9e73ce2L, 0x62623a7L, 0x18e26104L,
0x0e4f061L, 0x464cfee9L, 0xccdc534aL, 0xf192a14L, 0x94b71649L,
0xaeb0675L, 0x4647e040L, 0x397f1004L, 0x4ec8dfcL, 0xbfd0006bL,
0x5b4ed0fL, 0xba6bccbeL, 0x2e03fe1bL, 0x6f0b363L, 0xc3392942L,
0x2d6cf9cL, 0xce55fec5L, 0x09b40463L, 0x14a310bL, 0x7bbcf76bL,
0xc249602L, 0xc4e99555L, 0xde625355L, 0xc1aa55dL, 0x3eaced91L,
0x3b9ff1eL, 0x8d381f2dL, 0xbcdb5ba8L, 0xf7792bcL, 0xf05a19a0L,
0x60ffb0cL, 0x1a68fa68L, 0x02b1ce1aL, 0xa610474L, 0xd1a0fecbL,
0x90e8533L, 0x23f84d95L, 0x83c110c4L, 0xf90588dL, 0x9ee04455L,
0x40504baL, 0xfee93369L, 0x85804099L, 0xbe5d01bL, 0x4b3865d6L,
0xa5c108fL, 0x9654f2dcL, 0xb0d19772L, 0x406152bL, 0x7be2b8a5L,
0x92967adL, 0x6308e597L, 0xe874e16aL, 0xd2e274fL, 0x6007fc05L,
0x230fc39L, 0x99144de1L, 0x8dcc89b3L, 0x4161bfdL, 0x498cd270L,
0xdbbd9f8L, 0x5628d7d0L, 0x205d9ea4L, 0x214ebfaL, 0xd1ebedafL,
0x237002fL, 0x147e6e5eL, 0x4483ebd3L, 0x9b05aa6L, 0x3517c363L,
0x8e9e8a2L, 0x19d89df6L, 0x62defab3L, 0x4f4e201L, 0x57c48f3fL,
0x8e6e5dcL, 0x5fa6d27aL, 0x1dc3078eL, 0xca367f9L, 0xfdcbb7ccL,
0xf36414bL, 0x1d3a034fL, 0x122d654fL, 0xb336078L, 0x3a8b9600L,
0xb5f1484L, 0x3ccfb7c6L, 0x2ff89cf1L, 0x09919a6L, 0xfa83287eL,
0x694b7cdL, 0x77df5aeaL, 0x944508ccL, 0x581fbb8L, 0x728a05cbL,
0x4a31712L, 0xc2f6acfaL, 0x6e560b10L, 0xd8d7ce1L, 0x0d2b2adeL,
0x0bbaa936L
};
register act_uint32_t hash = 0xe9ae3b8aL /* random init */;
while (len-- > 0)
hash = ((hash<<1)^((hash>>31)&1)) ^ tab[*key++];
return hash;
}
/*
* PEARSON (Peter K. Pearson)
*
* This historical hash function was published by Peter K. Pearson.
* He claimed this algorithm worked well for text strings (with 8-bit
* bytes). The used table is an arbitrary permutation of the values
* 0x00..0xff I've calculated with a small Perl script for ACT.
* Additionally the version below contains actually four Pearson hash
* functions combined, one for each byte of the 32 bit hash in order
* to really generate a 32 bit hash (and not just an 8 bit hash as the
* original). As a result its now unfortunately a slower hash (because
* of the four byte output) but distributes real world keys very well.
* OTOH progressing keys consisting of the same bytes it dislikes very
* much and then produces lots of collisions (but that doesn't matter
* usually).
*/
intern act_uint32_t
act_hash_fct_pearson(
register act_uint8_t *key,
register act_size_t len)
{
static unsigned char ptab[256] = {
0xd0, 0x24, 0x61, 0x1f, 0x65, 0xfb, 0xe1, 0x12, 0x64, 0xa7,
0xd9, 0x7f, 0x49, 0xf1, 0xfc, 0x89, 0xd8, 0x57, 0x03, 0xda,
0x4a, 0x4e, 0xc8, 0xb9, 0x42, 0x7b, 0x44, 0x88, 0x3e, 0x6e,
0x1d, 0xc2, 0x96, 0x5d, 0x10, 0x67, 0x2b, 0x31, 0x5f, 0x2c,
0xfe, 0x4f, 0x01, 0x7d, 0xf6, 0xe7, 0x15, 0x54, 0xaa, 0x29,
0x81, 0x0b, 0xde, 0xc1, 0xc0, 0x16, 0x35, 0xf2, 0xc5, 0x43,
0x22, 0x41, 0xc9, 0x5a, 0xc6, 0x6a, 0x04, 0xb8, 0x94, 0xac,
0xc4, 0x1c, 0x36, 0x71, 0xaf, 0x17, 0xfd, 0xe6, 0x20, 0x56,
0x38, 0xbf, 0x55, 0xdf, 0x3d, 0x98, 0x40, 0x09, 0x0d, 0x33,
0xb7, 0x90, 0x76, 0xca, 0xff, 0x9c, 0x73, 0x7e, 0xa6, 0x6d,
0xcb, 0x39, 0xc3, 0xd5, 0xce, 0xa4, 0xc7, 0x27, 0xcf, 0x58,
0x1b, 0xb2, 0x8d, 0x11, 0x0c, 0x0f, 0x34, 0xb4, 0x69, 0xd6,
0x2f, 0xa5, 0x51, 0x32, 0x37, 0x6f, 0x8c, 0xcd, 0xba, 0x5e,
0x82, 0x1a, 0xa9, 0x46, 0x91, 0x93, 0xbc, 0xbe, 0xe2, 0x4b,
0x18, 0xdc, 0xeb, 0x3c, 0x21, 0x47, 0x70, 0x4d, 0xae, 0xf9,
0xee, 0xa3, 0xec, 0x97, 0x08, 0xab, 0xad, 0xbd, 0x48, 0xb0,
0xa0, 0xb3, 0x68, 0xd7, 0xe4, 0xe3, 0x79, 0x4c, 0x95, 0x8b,
0xb1, 0xf8, 0x2a, 0xa8, 0x9a, 0x30, 0xf3, 0xf5, 0xd3, 0x50,
0xf0, 0x9e, 0x63, 0x9d, 0x72, 0x3f, 0xd2, 0x85, 0x60, 0x3b,
0x0e, 0x6b, 0x19, 0x52, 0xe0, 0xef, 0x13, 0x6c, 0xb5, 0x8e,
0x00, 0x14, 0x8a, 0x1e, 0x06, 0xa2, 0xfa, 0x0a, 0x8f, 0x80,
0x86, 0x07, 0xed, 0x84, 0x92, 0x45, 0x26, 0xf7, 0x75, 0xd4,
0x83, 0x7a, 0xdd, 0x62, 0x7c, 0x9b, 0xe5, 0xa1, 0x2e, 0xdb,
0xea, 0x25, 0x5c, 0x87, 0x74, 0x5b, 0x99, 0x9f, 0xe8, 0x3a,
0x66, 0x02, 0x59, 0x28, 0xb6, 0xcc, 0x53, 0xf4, 0xe9, 0x05,
0xd1, 0x78, 0xbb, 0x77, 0x2d, 0x23
};
register unsigned char h1,h2,h3,h4;
register unsigned char c;
act_uint32_t hash;
h1 = 0x00; h2 = 0x33; h3 = 0x99; h4 = 0xaa; /* arbitrary random init */
while (len-- > 0) {
c = *key++;
h1 = ptab[h1 ^ c];
h2 = ptab[h2 ^ c];
h3 = ptab[h3 ^ c];
h4 = ptab[h4 ^ c];
}
hash = (h4 << 24) ^ (h3 << 16) ^ (h2 << 8) ^ h1;
return hash;
}
/*
* RIFKIN (Jon Rifkin Hash)
*
* This is the hash function from Jon Rifkin <j.rifkin@uconn.edu>
* as found in a similar form in hash.c inside his ipaudit package.
* It's an average hash function. Neither very good nor very bad.
*/
intern act_uint32_t
act_hash_fct_rifkin(
register act_uint8_t *key,
register act_size_t len)
{
register act_uint32_t hash = 0;
register int ishift = 0;
while (len-- > 0) {
hash ^= (((act_uint32_t)(*key++)) << ishift);
ishift += 8;
if (ishift >= 32)
ishift = 0;
}
hash = hash + (hash << 16) - (hash >> 16) - 1;
return hash;
}
/*
* ASU (Aho, Sethi, Ullman)
*
* This is the hashing algorithm as proposed by Aho, Seti and Ullmann in
* their algorithm books. It is not very fast, but distributes well.
*/
intern act_uint32_t
act_hash_fct_asu(
register act_uint8_t *key,
register act_size_t len)
{
register act_uint32_t hash;
register act_uint32_t g;
hash = (act_uint32_t)len;
while (len-- > 0) {
hash = (hash << 4) + *key++;
g = hash & 0xf0000000;
if (g != 0)
hash = (hash ^ (g >> 24)) ^ g;
}
return hash;
}
/*
* HOLUB (Holub Generic Hash)
*
* This is Weinberger's generic hash algorithm, as adapted and published
* by Holub. It was extracted from PHP4's mod_session. It is actually a
* not one of the best hash functions in the set, but might have some
* particular uses.
*/
intern act_uint32_t
act_hash_fct_holub(
register act_uint8_t *key,
register act_size_t len)
{
register act_uint32_t hash;
register act_uint32_t i;
hash = 0;
while (len-- > 0) {
hash = (hash << 4) + *key++;
if ((i = hash & 0xf0000000) != 0)
hash = (hash ^ (i >> 24)) & 0x0fffffff;
}
return hash;
}
/*
* CBU (CanterBury University)
*
* McKenzie et all concluded in a paper (B J McKenzie, R Harries & T
* Bell, Selecting a hashing algorithm, Software practice & experience
* 20, 2 (Feb 1990), 209-224.) that for hashing program identifiers, the
* following linear hash function is a good one. It was developed at
* the CanterBury University, in Christchurch, New Zealand. It is also
* used in the GNU RCS package (see rcs-5.7.tar.gz and there rcslex.c).
* It is very fast, but horribly dislikes progressing keys and also
* showed a bad distribution for real world keys. So take this hash very
* carefully and test whether it works for your data.
*/
intern act_uint32_t
act_hash_fct_cbu(
register act_uint8_t *key,
register act_size_t len)
{
register act_uint32_t hash = 0;
while (len-- > 0)
hash = (hash << 2) + *key++;
return hash;
}
/*
* CVS (Concurrent Version System)
*
* This is the hash function found in CVS 1.10.x (see src/hash.c). It
* is the same as the published elf_hash(3) function for use in the
* UNIX ELF format for object files. It works fine for binary keys but
* very bad for strings where it distributes horribly and has a bad
* Chi^2 value. The reason might be that our tests use larger (non-prime
* sized) hash tables while CVS actually uses this function with a 151
* byte long hash table only. So for special situations this hash might
* be reasonable. But as a general purpose hash function for arbitrary
* hash table lookups it is bad. Additionally it hates progressing keys.
* So this hash is only useful if one really knows the keys one has to
* hash and also tests whether this hash works for them.
*/
intern act_uint32_t
act_hash_fct_cvs(
register act_uint8_t *key,
register act_size_t len)
{
register act_uint32_t hash = 0;
register act_uint32_t g;
while (len-- > 0) {
hash = (hash << 4) + *key++;
/* rotation */
if ((g = (hash & 0xf0000000)) != 0)
hash = (hash ^ (g >> 24)) ^ g;
}
return hash;
}
/*
** ======================================================================
** Hash Function Test and Comparison Suite
** ======================================================================
*/
#ifdef ACT_TEST
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <sys/time.h>
typedef act_uint32_t ub4;
#define hashsize(n) ((ub4)1<<(n))
#define hashmask(n) (hashsize(n)-1)
/* table of hash functions */
typedef struct {
char *name;
act_hash_fct_t hash;
struct {
double t;
long coll00;
long coll55;
long collNN;
double used;
long min;
long max;
long delta;
double s_chi2;
double b_chi2;
} stat;
} table_entry;
#define EMPTY_STAT { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
table_entry table[] = {
{ "DJBX33A", act_hash_fct_djbx33a, EMPTY_STAT },
{ "DJBX33X", act_hash_fct_djbx33x, EMPTY_STAT },
{ "JEDI", act_hash_fct_jedi, EMPTY_STAT },
{ "VOCONG", act_hash_fct_vocong, EMPTY_STAT },
{ "CDT", act_hash_fct_cdt, EMPTY_STAT },
{ "JOTCL", act_hash_fct_jotcl, EMPTY_STAT },
{ "BJDDJ", act_hash_fct_bjddj, EMPTY_STAT },
{ "CRC32", act_hash_fct_crc32, EMPTY_STAT },
{ "TEADM", act_hash_fct_teadm, EMPTY_STAT },
{ "CPOAAT", act_hash_fct_cpoaat, EMPTY_STAT },
{ "FNV", act_hash_fct_fnv, EMPTY_STAT },
{ "OZSDBM", act_hash_fct_ozsdbm, EMPTY_STAT },
{ "KAZLIB", act_hash_fct_kazlib, EMPTY_STAT },
{ "BUZHASH", act_hash_fct_buzhash, EMPTY_STAT },
{ "PEARSON", act_hash_fct_pearson, EMPTY_STAT },
{ "RIFKIN", act_hash_fct_rifkin, EMPTY_STAT },
{ "ASU", act_hash_fct_asu, EMPTY_STAT },
{ "HOLUB", act_hash_fct_holub, EMPTY_STAT },
{ "CBU", act_hash_fct_cbu, EMPTY_STAT },
{ "CVS", act_hash_fct_cvs, EMPTY_STAT },
{ NULL, NULL }
};
/* used for timings */
void driver1(table_entry *te)
{
char buf[15000];
act_uint32_t h;
struct timeval tv1, tv2;
double td;
int i;
for (i = 0; i < 15000; i++)
buf[i] = i;
gettimeofday(&tv1, NULL);
for (i = 0; i < 15000; i++)
h = te->hash(buf,i);
gettimeofday(&tv2, NULL);
td = ((double)(tv2.tv_sec*1000000 + tv2.tv_usec) / 1000000) -
((double)(tv1.tv_sec*1000000 + tv1.tv_usec) / 1000000);
te->stat.t = td;
return;
}
/* check for problems with nulls */
int driver2b(table_entry *te, act_uint8_t *buf)
{
act_uint32_t brain[1000];
act_uint32_t h;
int eq;
int i, j;
for (i = 0; i < 1000; i++)
brain[i] = te->hash(buf, i);
eq = 0;
for (i = 0; i < 1000; i++) {
for (j = 0; j < 1000; j++) {
if (i == j)
continue;
if (brain[i] == brain[j])
eq++;
}
}
return eq;
}
void driver2(table_entry *te)
{
unsigned char buf[1000];
int i;
int eq;
for (i = 0; i < 1000; i++)
buf[i] = 0;
eq = driver2b(te, buf);
te->stat.coll00 = eq;
for (i = 0; i < 1000; i++)
buf[i] = 0x55;
eq = driver2b(te, buf);
te->stat.coll55 = eq;
for (i = 0; i < 1000; i++)
buf[i] = i;
eq = driver2b(te, buf);
te->stat.collNN = eq;
return;
}
/* check for distribution */
void driver3(table_entry *te, char *file, int linewise)
{
#define TABLESIZE 1000
unsigned char buf[1024];
act_uint32_t htab[TABLESIZE];
act_uint32_t h;
act_uint32_t min, max, exp;
FILE *fp;
int k;
int i, j;
int b;
int nr;
double p;
double chi2;
int bi;
for (i = 0; i < TABLESIZE; i++)
htab[i] = 0;
if ((fp = fopen(file, "r")) == NULL) {
perror("fopen");
return;
}
min = 0;
max = 0;
k = 0;
if (linewise) {
while (fgets(buf, sizeof(buf), fp) != NULL) {
h = te->hash(buf, strlen(buf)) % TABLESIZE;
htab[h]++;
min++;
k++;
if (k > TABLESIZE*2)
break;
}
}
else {
while ((b = fread(buf, 1, 10, fp)) > 0 && !feof(fp)) {
h = te->hash(buf, b) % TABLESIZE;
htab[h]++;
min++;
k++;
if (k > TABLESIZE*2)
break;
}
}
fclose(fp);
nr = 0;
for (i = 0; i < TABLESIZE; i++) {
min = _M_MIN(min, htab[i]);
max = _M_MAX(max, htab[i]);
if (htab[i] == 0)
nr++;
}
/* Calculate Chi^2 value */
p = ((double)k)/TABLESIZE;
chi2 = 0;
for (i = 0; i < k; i++) {
bi = 0;
for (j = 0; j < TABLESIZE; j++)
if (htab[j] == i)
bi++;
chi2 += (bi * ((double)((i-p)*(i-p))) / p);
}
chi2 -= TABLESIZE;
chi2 /= sqrt((double)TABLESIZE);
if (linewise)
te->stat.s_chi2 = chi2;
else
te->stat.b_chi2 = chi2;
te->stat.used = (nr == 0 ? 100 : 100-(((double)nr)/TABLESIZE)*100);
te->stat.min = min;
te->stat.max = max;
te->stat.delta = max-min;
return;
}
/* the driver program */
int main(int argc, char *argv[])
{
int i;
system("gzip -1 </usr/share/dict/words >/tmp/x");
printf("Testing:");
for (i = 0; table[i].name != NULL; i++) {
printf(" %s", table[i].name);
fflush(stdout);
driver1(&table[i]);
driver2(&table[i]);
driver3(&table[i], "/usr/share/dict/words", 1);
driver3(&table[i], "/tmp/x", 0);
}
printf("\n");
fflush(stdout);
printf("+-----------------------------------------------------------------------------+\n");
printf("| Hash Func Time Coll00 Coll55 CollNN Used Min Max Diff Chi2/S Chi2/B |\n");
printf("+ ---------- ------ ------ ------ ------ ----- ---- ---- ---- ------- ------- +\n");
for (i = 0; table[i].name != NULL; i++) {
printf("| %-10s %6.2f %6d %6d %6d %5.2f %4d %4d %4d %7.2f%c%7.2f%c|\n",
table[i].name,
table[i].stat.t,
table[i].stat.coll00,
table[i].stat.coll55,
table[i].stat.collNN,
table[i].stat.used,
table[i].stat.min,
table[i].stat.max,
table[i].stat.delta,
table[i].stat.s_chi2,
(table[i].stat.s_chi2 > 3 || table[i].stat.s_chi2 < -3) ? '!' : ' ',
table[i].stat.b_chi2,
(table[i].stat.b_chi2 > 3 || table[i].stat.b_chi2 < -3) ? '!' : ' ');
}
printf("+-----------------------------------------------------------------------------+\n");
return 0;
}
#endif /* ACT_TEST */