*** /dev/null Sat Nov 23 01:00:27 2024
--- - Sat Nov 23 01:00:29 2024
***************
*** 0 ****
--- 1,1271 ----
+ /* ====================================================================
+ * Copyright (c) 1999 Ralf S. Engelschall. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY RALF S. ENGELSCHALL ``AS IS'' AND ANY
+ * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL RALF S. ENGELSCHALL OR
+ * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
+ * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
+ * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
+ * OF THE POSSIBILITY OF SUCH DAMAGE.
+ * ====================================================================
+ */
+
+ /*
+ ** act_hash_fct.c -- Hash Functions
+ **
+ ** This is a large collection of more or less reasonable hash functions
+ ** for use in conjunction with hash table lookups. One should not use
+ ** these functions for cryptography, of course. They do only fulfill the
+ ** (weaker) requirements of the hash table lookup discipline:
+ **
+ ** 1. the function must be deterministic and stateless
+ ** 2. the function must be very fast to compute
+ ** 3. the function must distribute the keys very good
+ **
+ ** Every function in this piece of source has the following signature:
+ **
+ ** act_uint32_t act_hash_fct_<name>(act_uint8_t *key, act_size_t len)
+ **
+ ** This means that every function takes a pointer to the key data
+ ** (accessed byte-wise) plus the key length (in bytes) and gives back an
+ ** integer at least 32 bit in size (ANSI C requires `long' to be greater
+ ** than `int' and `int' to be greater than `char', so `long' is at least
+ ** 32 bits if one assumes that only 2^k aligned sizes exist).
+ **
+ ** That a hash function causes collisions is clear already from the
+ ** famous Birthday Paradoxon (if 23 people are in a room, the chance
+ ** is already over 50% that the birthday of two people falls onto the
+ ** same day of the year; or in oder words: if you hash 23 keys into 365
+ ** buckets you already have to expect a collision).
+ **
+ ** Usually there are a gazillion more possible keys than buckets, so
+ ** the best any hash function can do is map an equal number of those
+ ** gazillion keys to each bucket. The number of collisions you get is
+ ** expected to follow the Chi^2 distribution.
+ **
+ ** Here's how Chi^2 is computed:
+ ** 1. Lookup: b = total number of buckets
+ ** 2. Lookup: k = total number of keys
+ ** 3. Lookup: b_i = number of buckets which have i keys
+ ** 4. Compute: p = k/b (the expected number of keys per bucket)
+ ** 5. Compute: Chi^2 = sum (over all i) (b_i*((i-p)^2)/p)
+ **
+ ** The distribution is expected to have a result close to b, i.e.,
+ ** within 3sqrt(b) of b. Chi^2 measures are usually reported in units of
+ ** standard deviations. That is, if the formula above gives b+c*sqrt(b),
+ ** they report c, and c is expected to be between -3 and 3.
+ **
+ ** For comparing the hash functions (including the calculation of Chi^2)
+ ** run `make test-hash-fct' which compiles the test suite at the end
+ ** of this source. The order of writing down of the hash functions in
+ ** this source follows the results of the comparisons, i.e. the hash
+ ** functions are ordered strongest to weakest. On a Pentium-II/400
+ ** under FreeBSD 3.1 the table looks approximately as following:
+ **
+ ** +-----------------------------------------------------------------------------+
+ ** | Hash Func Time Coll00 Coll55 CollNN Used Min Max Diff Chi2/S Chi2/B |
+ ** + ---------- ------ ------ ------ ------ ----- ---- ---- ---- ------- ------- +
+ ** | DJBX33A 1.23 0 0 0 86.80 0 8 8 0.19 0.41 |
+ ** | DJBX33X 1.23 0 0 0 86.80 0 8 8 -2.24 0.38 |
+ ** | JEDI 1.30 0 0 0 86.80 0 8 8 0.13 -0.70 |
+ ** | VOCONG 1.41 0 0 0 85.90 0 9 9 -0.92 0.44 |
+ ** | JOTCL 1.69 0 0 0 85.80 0 7 7 -2.12 0.16 |
+ ** | BJDDJ 2.34 0 0 0 85.30 0 8 8 1.90 1.23 |
+ ** | CRC32 2.95 0 0 0 86.80 0 8 8 0.85 -0.89 |
+ ** | TEADM 3.92 0 0 32 86.20 0 7 7 -0.70 -0.16 |
+ ** | CPOAAT 2.36 0 0 0 87.20 0 8 8 0.70 -2.09 |
+ ** | OZSDBM 2.36 999000 0 2 87.10 0 10 10 0.47 -1.55 |
+ ** | FONOVO 4.10 999000 0 2 86.00 0 8 8 -0.60 -0.44 |
+ ** | KAZLIB 5.43 0 0 0 87.40 0 8 8 7.74! -0.00 |
+ ** | BUZHASH 2.74 30256 30256 976 86.20 0 9 9 -1.80 -2.28 |
+ ** | PEARSON 5.10 3160 5238 0 88.10 0 8 8 -1.64 -0.60 |
+ ** | RIFKIN 2.40 999000 124000 10754 86.90 0 8 8 0.85 2.31 |
+ ** | ASU 3.12 0 0 0 86.40 0 8 8 441.58! 0.38 |
+ ** | HOLUB 3.26 999000 82170 2 86.80 0 9 9 441.17! 0.85 |
+ ** | CBU 1.13 999000 967272 2834 86.50 0 8 8 216.29! -0.51 |
+ ** | CVS 3.28 999000 82170 2 86.80 0 9 9 441.17! 0.85 |
+ ** +-----------------------------------------------------------------------------+
+ **
+ ** For further reading on the topic, start at Bob Jenkins ``Hashing
+ ** Frequently Asked Questions'' and ``Hash Evaluation'' Paper:
+ ** o http://burtleburtle.net/bob/hash/hashfaq.html
+ ** o http://burtleburtle.net/bob/hash/evahash.html
+ */
+
+ #include "act.h"
+ #include "act_p.h"
+
+ /*
+ * DJBX33A (Daniel J. Bernstein, Times 33 with Addition)
+ *
+ * This is Daniel J. Bernstein's popular `times 33' hash function as
+ * posted by him years ago on comp.lang.c. It basically uses a function
+ * like ``hash(i) = hash(i-1) * 33 + str[i]''. This is one of the best
+ * known hash functions for strings. Because it is both computed very
+ * fast and distributes very well.
+ *
+ * The magic of number 33, i.e. why it works better than many other
+ * constants, prime or not, has never been adequately explained by
+ * anyone. So I try an explanation: if one experimentally tests all
+ * multipliers between 1 and 256 (as RSE did now) one detects that even
+ * numbers are not useable at all. The remaining 128 odd numbers
+ * (except for the number 1) work more or less all equally well. They
+ * all distribute in an acceptable way and this way fill a hash table
+ * with an average percent of approx. 86%.
+ *
+ * If one compares the Chi/2 values of the variants, the number 33 not
+ * even has the best value. But the number 33 and a few other equally
+ * good numbers like 17, 31, 63, 127 and 129 have nevertheless a great
+ * advantage to the remaining numbers in the large set of possible
+ * multipliers: their multiply operation can be replaced by a faster
+ * operation based on just one shift plus either a single addition
+ * or subtraction operation. And because a hash function has to both
+ * distribute good _and_ has to be very fast to compute, those few
+ * numbers should be preferred and seems to be the reason why Daniel J.
+ * Bernstein also preferred it.
+ *
+ * Below there are two variants: the original variant with only the
+ * multiplication optimized via bit shifts and additionally a variant
+ * which has the hash unrolled eight times for speed. Both additionally
+ * are optimized for speed even more by unrolling the loop.
+ */
+ intern act_uint32_t
+ act_hash_fct_djbx33a(
+ register act_uint8_t *key,
+ register act_size_t len)
+ {
+ register act_uint32_t hash = 5381;
+
+ #ifdef ACT_NON_OPTIMIZE
+ while (len-- > 0)
+ hash = ((hash << 5) + hash) + *key++;
+ #else
+ /* variant with the hash unrolled eight times */
+ for (; len >= 8; len -= 8) {
+ hash = ((hash << 5) + hash) + *key++;
+ hash = ((hash << 5) + hash) + *key++;
+ hash = ((hash << 5) + hash) + *key++;
+ hash = ((hash << 5) + hash) + *key++;
+ hash = ((hash << 5) + hash) + *key++;
+ hash = ((hash << 5) + hash) + *key++;
+ hash = ((hash << 5) + hash) + *key++;
+ hash = ((hash << 5) + hash) + *key++;
+ }
+ switch (len) {
+ case 7: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
+ case 6: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
+ case 5: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
+ case 4: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
+ case 3: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
+ case 2: hash = ((hash << 5) + hash) + *key++; /* fallthrough... */
+ case 1: hash = ((hash << 5) + hash) + *key++; break;
+ default: /* case 0: */ break;
+ }
+ #endif
+ return hash;
+ }
+
+ /*
+ * DJBX33X (Daniel J. Bernstein, Times 33 with Exclusive-Or)
+ *
+ * This is Daniel J. Bernstein's revised `times 33' hash function
+ * which is currently favored by him (see his CDB package): it uses
+ * exclusive-or instead of addition to merge in the key information.
+ * It behaves mostly equal to the DJBX33A hash, i.e. it is also a very
+ * good hash (both fast and with good distribution). It can be found for
+ * instance in his CDB package (see cdb_hash.c).
+ */
+ intern act_uint32_t
+ act_hash_fct_djbx33x(
+ register act_uint8_t *key,
+ register act_size_t len)
+ {
+ register act_uint32_t hash = 5381;
+
+ #ifdef ACT_NON_OPTIMIZE
+ while (len-- > 0)
+ hash = ((hash << 5) + hash) ^ *key++;
+ #else
+ /* variant with the hash unrolled eight times */
+ for (; len >= 8; len -= 8) {
+ hash = ((hash << 5) + hash) ^ *key++;
+ hash = ((hash << 5) + hash) ^ *key++;
+ hash = ((hash << 5) + hash) ^ *key++;
+ hash = ((hash << 5) + hash) ^ *key++;
+ hash = ((hash << 5) + hash) ^ *key++;
+ hash = ((hash << 5) + hash) ^ *key++;
+ hash = ((hash << 5) + hash) ^ *key++;
+ hash = ((hash << 5) + hash) ^ *key++;
+ }
+ switch (len) {
+ case 7: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */
+ case 6: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */
+ case 5: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */
+ case 4: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */
+ case 3: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */
+ case 2: hash = ((hash << 5) + hash) ^ *key++; /* fallthrough... */
+ case 1: hash = ((hash << 5) + hash) ^ *key++; break;
+ default: /* case 0: */ break;
+ }
+ #endif
+ return hash;
+ }
+
+ /*
+ * JEDI (Frank Denis <i@4u.net>)
+ *
+ * The Jedi hash is a variant of Daniel Bernstein's `times 33' hash
+ * function (using exclusive-or), which Frank 'Jedi' Denis created for
+ * a patch to Linux's ReiserFS. It assumes that the key is a filesystem
+ * path and this way attempts to achieve a better distribution by
+ * hashing from right to left and by treating the key as a text string.
+ * So, this variant of DJB's original hash function is intended for
+ * hashing filesystem path like strings. Below there are two variants:
+ * the original variant from Frank Denis and additionally a variant
+ * which has the hash unrolled eight times for speed.
+ */
+ intern act_uint32_t
+ act_hash_fct_jedi(
+ register act_uint8_t *key,
+ register act_size_t len)
+ {
+ register act_uint32_t hash = 5381;
+
+ #ifdef ACT_NON_OPTIMIZE
+ while (len-- > 0)
+ hash = ((hash << 5) + hash) ^ (key[len] - '0');
+ #else
+ /* variant with the hash unrolled eight times */
+ while (len >= 8) {
+ hash = ((hash << 5) + hash) ^ (key[--len] - '0');
+ hash = ((hash << 5) + hash) ^ (key[--len] - '0');
+ hash = ((hash << 5) + hash) ^ (key[--len] - '0');
+ hash = ((hash << 5) + hash) ^ (key[--len] - '0');
+ hash = ((hash << 5) + hash) ^ (key[--len] - '0');
+ hash = ((hash << 5) + hash) ^ (key[--len] - '0');
+ hash = ((hash << 5) + hash) ^ (key[--len] - '0');
+ hash = ((hash << 5) + hash) ^ (key[--len] - '0');
+ }
+ switch (len) {
+ case 7: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */
+ case 6: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */
+ case 5: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */
+ case 4: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */
+ case 3: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */
+ case 2: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); /* fallthrough... */
+ case 1: hash = ((hash << 5) + hash) ^ (key[--len] - '0'); break;
+ default: /* case 0: */ break;
+ }
+ #endif
+ return hash ^ ((hash & 0x7f) << 24);
+ }
+
+ /*
+ * VOCONG (Phong Vo, Congruential Hash)
+ *
+ * This is Phong Vo <kpv@research.att.com>'s linear congruential hash.
+ * It's a very fast one and (although of its simplicity) it distributes
+ * surprisingly well. It can be found for instance in the Berkeley-DB 3.x
+ * package (hash/hash_func.c).
+ */
+ intern act_uint32_t
+ act_hash_fct_vocong(
+ register act_uint8_t *key,
+ register act_size_t len)
+ {
+ register act_uint32_t hash = 0;
+
+ while (len-- > 0)
+ hash = hash * 0x63c63cd9 + 0x9c39c33d + *key++;
+ return hash;
+ }
+
+ /*
+ * JOTCL (John Ousterhout, Tcl)
+ *
+ * This is John Ousterhout's hash from his Tcl 8.2's tclHash.c. He
+ * said, he has chosen this particular hash (multiply by 9 and add new
+ * character) because of the following reasons:
+ * 1. Multiplying by 10 is perfect for keys that are decimal strings,
+ * and multiplying by 9 is just about as good.
+ * 2. Times-9 is (shift-left-3) plus (old). This means that each
+ * character's bits hang around in the low-order bits of the hash
+ * value for ever, plus they spread fairly rapidly up to the
+ * high-order bits to fill out the hash value. This seems works well
+ * both for decimal and non-decimal strings
+ * In fact this is a fast hash, but the original version which
+ * initializes the hash with 0 causes collissions for keys with
+ * increasing same bytes. So our variant here uses the golden ratio (but
+ * every arbitrary value != 0 should work) instead.
+ */
+ intern act_uint32_t
+ act_hash_fct_jotcl(
+ register act_uint8_t *key,
+ register act_size_t len)
+ {
+ register act_uint32_t hash = 0x9e3779b9;
+
+ while (len-- > 0)
+ hash = ((hash << 3) + hash) + *key++;
+ return hash;
+ }
+
+ /*
+ * BJDDJ (Bob Jenkins, Dr. Dobbs Journal)
+ *
+ * This is a very complex but also very good hash function, as proposed
+ * in the March'97 issue of Dr. Dobbs Journal (DDJ) by Bob Jenkins (see
+ * http://burtleburtle.net/bob/hash/doobs.html for online version). He
+ * showed that this hash function has both very good distribution and
+ * performance and our own hash function comparison confirmed this. The
+ * only difference to the original function of B.J. here is that our
+ * version doesn't provide the `level' (= previous hash) argument for
+ * consistency reasons with the other hash functions (i.e. same function
+ * signature). It can be definetely recommended as a good general
+ * purpuse hash function.
+ */
+ intern act_uint32_t
+ act_hash_fct_bjddj(
+ register act_uint8_t *k,
+ register act_size_t length)
+ {
+ register act_uint32_t a,b,c,len;
+
+ /* some abbreviations */
+ #define ub4 act_uint32_t
+ #define mix(a,b,c) { \
+ a -= b; a -= c; a ^= (c>>13); \
+ b -= c; b -= a; b ^= (a<< 8); \
+ c -= a; c -= b; c ^= (b>>13); \
+ a -= b; a -= c; a ^= (c>>12); \
+ b -= c; b -= a; b ^= (a<<16); \
+ c -= a; c -= b; c ^= (b>> 5); \
+ a -= b; a -= c; a ^= (c>> 3); \
+ b -= c; b -= a; b ^= (a<<10); \
+ c -= a; c -= b; c ^= (b>>15); \
+ }
+
+ /* setup the internal state */
+ len = length;
+ a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
+ c = 0;
+
+ /* handle most of the key */
+ while (len >= 12) {
+ a += (k[0] +((ub4)k[1]<<8) +((ub4)k[ 2]<<16) +((ub4)k[ 3]<<24));
+ b += (k[4] +((ub4)k[5]<<8) +((ub4)k[ 6]<<16) +((ub4)k[ 7]<<24));
+ c += (k[8] +((ub4)k[9]<<8) +((ub4)k[10]<<16) +((ub4)k[11]<<24));
+ mix(a,b,c);
+ k += 12; len -= 12;
+ }
+
+ /* handle the last 11 bytes */
+ c += length;
+ switch(len) {
+ /* all the case statements fall through */
+ case 11: c+=((ub4)k[10]<<24);
+ case 10: c+=((ub4)k[ 9]<<16);
+ case 9 : c+=((ub4)k[ 8]<< 8);
+ /* the first byte of c is reserved for the length */
+ case 8 : b+=((ub4)k[ 7]<<24);
+ case 7 : b+=((ub4)k[ 6]<<16);
+ case 6 : b+=((ub4)k[ 5]<< 8);
+ case 5 : b+=k[4];
+ case 4 : a+=((ub4)k[ 3]<<24);
+ case 3 : a+=((ub4)k[ 2]<<16);
+ case 2 : a+=((ub4)k[ 1]<< 8);
+ case 1 : a+=k[0];
+ /* case 0: nothing left to add */
+ }
+ mix(a,b,c);
+
+ #undef ub4
+ #undef mix
+
+ /* report the result */
+ return c;
+ }
+
+ /*
+ * CRC32 (Cyclic Redundancy Check 32-Bit)
+ *
+ * This hash function is based on the CRC-32 (Cyclic Redundancy Check
+ * with 32 Bit) algorithm as invented by Mark Adler. It one of the hash
+ * functions with medium performance but with very good distribution. So
+ * it can be considered as a rock solid general purpose hash function.
+ */
+ intern act_uint32_t
+ act_hash_fct_crc32(
+ register act_uint8_t *key,
+ register act_size_t len)
+ {
+ static act_uint32_t tab[256] = {
+ 0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
+ 0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
+ 0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
+ 0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
+ 0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
+ 0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
+ 0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
+ 0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
+ 0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
+ 0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
+ 0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
+ 0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
+ 0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
+ 0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
+ 0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
+ 0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
+ 0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
+ 0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
+ 0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
+ 0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
+ 0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
+ 0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
+ 0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
+ 0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
+ 0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
+ 0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
+ 0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
+ 0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
+ 0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
+ 0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
+ 0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
+ 0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
+ 0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
+ 0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
+ 0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
+ 0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
+ 0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
+ 0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
+ 0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
+ 0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
+ 0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
+ 0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
+ 0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
+ 0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
+ 0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
+ 0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
+ 0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
+ 0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
+ 0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
+ 0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
+ 0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
+ 0x2d02ef8dL
+ };
+ register act_uint32_t hash;
+
+ hash = 0xffffffff;
+ while (len-- > 0)
+ hash = tab[(hash ^ *key++) & 0xff] ^ (hash >> 8);
+ hash ^= 0xffffffff;
+ return hash;
+ }
+
+ /*
+ * CPOAAT (Colin Plumb, One-At-A-Time)
+ *
+ * This hash function was derived by Bob Jenkins from requirements posed
+ * by Colin Plumb. It was named `One At A Time' by Bob Jenkins. Analysis
+ * suggested that there were no funnels in this hash, i.e. every input
+ * bit affects every output bit. Additionally it's a very fast hash and
+ * only the original function (which started with "hash = 0") disliked
+ * progressing keys a little bit (which doesn't hurt in practice). Our
+ * variant above uses the value of the DJBX33A hash (but any arbitrary
+ * value should work) and this way avoid this, too.
+ */
+ intern act_uint32_t
+ act_hash_fct_cpoaat(
+ register act_uint8_t *ptr,
+ register act_size_t len)
+ {
+ register act_uint32_t hash = 5381;
+
+ while (len-- > 0) {
+ hash += *ptr++;
+ hash += (hash << 10);
+ hash ^= (hash >> 6);
+ }
+ hash += (hash << 3);
+ hash ^= (hash >> 11);
+ hash += (hash << 15);
+ return hash;
+ }
+
+ /*
+ * TEADM (Tiny Encryption Algorithm & Davis-Meyer)
+ *
+ * The TEA hash is a keyed 32-bit hash function using Tiny Encryption
+ * Algorithm (TEA) in a Davis-Meyer function (H0 = Key, Hi = E
+ * Mi(Hi-1) + Hi-1). For details see Applied Cryptography, 2nd
+ * edition, p448. It was found in ReiserFS's hashing code as written
+ * by Jeremy Fitzhardinge <jeremy@zip.com.au>. This hash is actually a
+ * cryptographically strong hash and this way not really optimimal for
+ * use inside hash data structures. Because it is slower than most of
+ * the other functions, although it distributes very well.
+ */
+ intern act_uint32_t
+ act_hash_fct_teadm(
+ register act_uint8_t *key,
+ register act_size_t len)
+ {
+ act_uint32_t k[] = { 0x9464a485, 0x542e1a94, 0x3e846bff, 0xb75bcfc3 };
+ act_uint32_t h0 = k[0], h1 = k[1];
+ act_uint32_t a, b, c, d;
+ act_uint32_t pad;
+ int i;
+
+ #define TEAFULLROUNDS 10 /* 32 is overkill, 16 is strong crypto */
+ #define TEAPARTROUNDS 6 /* 6 gets complete mixing */
+
+ /* a, b, c, d - data; h0, h1 - accumulated hash */
+ #define TEACORE(rounds) \
+ do { \
+ act_uint32_t sum = 0; \
+ int n = rounds; \
+ act_uint32_t b0, b1; \
+ b0 = h0; \
+ b1 = h1; \
+ do { \
+ sum += 0x9E3779B9; \
+ b0 += ((b1 << 4)+a) ^ (b1+sum) ^ ((b1 >> 5)+b); \
+ b1 += ((b0 << 4)+c) ^ (b0+sum) ^ ((b0 >> 5)+d); \
+ } while(--n); \
+ h0 += b0; \
+ h1 += b1; \
+ } while(0)
+
+ pad = (act_uint32_t)len | ((act_uint32_t)len << 8);
+ pad |= pad << 16;
+ while (len >= 16) {
+ a = (act_uint32_t)key[ 0] |
+ (act_uint32_t)key[ 1] << 8 |
+ (act_uint32_t)key[ 2] << 16|
+ (act_uint32_t)key[ 3] << 24;
+ b = (act_uint32_t)key[ 4] |
+ (act_uint32_t)key[ 5] << 8 |
+ (act_uint32_t)key[ 6] << 16|
+ (act_uint32_t)key[ 7] << 24;
+ c = (act_uint32_t)key[ 8] |
+ (act_uint32_t)key[ 9] << 8 |
+ (act_uint32_t)key[10] << 16|
+ (act_uint32_t)key[11] << 24;
+ d = (act_uint32_t)key[12] |
+ (act_uint32_t)key[13] << 8 |
+ (act_uint32_t)key[14] << 16|
+ (act_uint32_t)key[15] << 24;
+ TEACORE(TEAPARTROUNDS);
+ len -= 16;
+ key += 16;
+ }
+ if (len >= 12) {
+ if (len >= 16)
+ *(int *)0 = 0;
+ a = (act_uint32_t)key[ 0] |
+ (act_uint32_t)key[ 1] << 8 |
+ (act_uint32_t)key[ 2] << 16|
+ (act_uint32_t)key[ 3] << 24;
+ b = (act_uint32_t)key[ 4] |
+ (act_uint32_t)key[ 5] << 8 |
+ (act_uint32_t)key[ 6] << 16|
+ (act_uint32_t)key[ 7] << 24;
+ c = (act_uint32_t)key[ 8] |
+ (act_uint32_t)key[ 9] << 8 |
+ (act_uint32_t)key[10] << 16|
+ (act_uint32_t)key[11] << 24;
+ d = pad;
+ for (i = 12; i < len; i++) {
+ d <<= 8;
+ d |= key[i];
+ }
+ }
+ else if (len >= 8) {
+ if (len >= 12)
+ *(int *)0 = 0;
+ a = (act_uint32_t)key[ 0] |
+ (act_uint32_t)key[ 1] << 8 |
+ (act_uint32_t)key[ 2] << 16|
+ (act_uint32_t)key[ 3] << 24;
+ b = (act_uint32_t)key[ 4] |
+ (act_uint32_t)key[ 5] << 8 |
+ (act_uint32_t)key[ 6] << 16|
+ (act_uint32_t)key[ 7] << 24;
+ c = d = pad;
+ for (i = 8; i < len; i++) {
+ c <<= 8;
+ c |= key[i];
+ }
+ }
+ else if (len >= 4) {
+ if (len >= 8)
+ *(int *)0 = 0;
+ a = (act_uint32_t)key[ 0] |
+ (act_uint32_t)key[ 1] << 8 |
+ (act_uint32_t)key[ 2] << 16|
+ (act_uint32_t)key[ 3] << 24;
+ b = c = d = pad;
+ for (i = 4; i < len; i++) {
+ b <<= 8;
+ b |= key[i];
+ }
+ }
+ else {
+ if (len >= 4)
+ *(int *)0 = 0;
+ a = b = c = d = pad;
+ for (i = 0; i < len; i++) {
+ a <<= 8;
+ a |= key[i];
+ }
+ }
+ TEACORE(TEAFULLROUNDS);
+ return h0^h1;
+ }
+
+ /*
+ * OZSDBM (Ozan 'Oz' Yigit, SDBM)
+ *
+ * This is the hashing function which was originally designed
+ * by Ozan (Oz) Yigit for his popular SDBM library (see hash.c
+ * in http://www.cs.yorku.ca/~oz/sdbm.bun). It works relatively
+ * well in scrambling bits. The actual function is in the form
+ * ``hash(i) = hash(i-1) * 65599 + str[i]''. What is used here is the
+ * faster version as found for instance in GNU awk (see array.c in
+ * ftp://ftp.gnu.org/gnu/gawk/gawk-3.0.4.tar.gz), because 65599 = 2^6 +
+ * 2^16- 1. The magic constant 65599 was picked out of thin air by Oz,
+ * but turns out to be a prime. The number 65587 was claimed to be even
+ * better by him, but was not actually used in SDBM. The optimized
+ * variant below is very ugly to read, but fast. It breaks the key
+ * up into 8 byte units. On the first time through the loop get the
+ * "leftover bytes" (len % 8). On every other iteration, perform 8
+ * HASHC's so we handle all 8 bytes. Essentially, this saves 7 compare &
+ * branch instructions.
+ */
+ intern act_uint32_t
+ act_hash_fct_ozsdbm(
+ register act_uint8_t *ptr,
+ register act_size_t len)
+ {
+ register act_uint32_t hash = 0;
+
+ #ifdef ACT_NON_OPTIMIZE
+ while (len-- > 0)
+ hash = ((hash << 6) + (hash << 16) - hash) + *ptr++;
+ #else
+ if (len > 0) {
+ register int loop = (len + 8 - 1) >> 3;
+
+ #define HASHC hash = ((hash << 6) + (hash << 16) - hash) + *ptr++;
+
+ switch (len & (8 - 1)) {
+ case 0: do {
+ HASHC; case 7: HASHC;
+ case 6: HASHC; case 5: HASHC;
+ case 4: HASHC; case 3: HASHC;
+ case 2: HASHC; case 1: HASHC;
+ } while (--loop);
+ }
+ }
+ #endif
+ return hash;
+ }
+
+ /*
+ * FONOVO (Glenn Fowler, Landon Curt Noll, Phong Vo)
+ *
+ * This is the Fowler-Noll-Vo hash. The basis of the hash algorithm
+ * was taken from an idea sent by Email to the IEEE Posix P1003.2
+ * mailing list from Phong Vo <kpv@research.att.com> and Glenn Fowler
+ * <gsf@research.att.com>. Landon Curt Noll <chongo@toad.com> later
+ * improved on their algorithm. The magic is in the interesting
+ * relationship between the special prime 16777619 (2^24 + 403) and 2^32
+ * and 2^8 (although the description of the magic I couldn't find any
+ * longer). This hash produces only very few collisions for real world
+ * keys and works well on both numbers and strings. But it's one of the
+ * slower hashes and produces collisions for the null progressing test
+ * (which usually doesn't hurt, of course).
+ */
+ intern act_uint32_t
+ act_hash_fct_fonovo(
+ register act_uint8_t *key,
+ register act_size_t len)
+ {
+ register act_uint32_t hash = 0;
+
+ while (len-- > 0) {
+ hash *= 16777619;
+ hash ^= *key++;
+ }
+ return hash;
+ }
+
+ /*
+ * KAZLIB (Kaz Kylheku, Hash Library)
+ *
+ * This is Kaz Kylheku's hash function as used in his kazlib (see
+ * http://users.footprints.net/~kaz/kazlib.html) package. It has a very
+ * good distribution, but unfortunately it is one of the slowest hash
+ * functions.
+ */
+ intern act_uint32_t
+ act_hash_fct_kazlib(
+ register act_uint8_t *key,
+ register act_size_t len)
+ {
+ static act_uint32_t tab[] = {
+ 0x49848f1bL, 0xe6255dbaL, 0x36da5bdcL, 0x47bf94e9L,
+ 0x8cbcce22L, 0x559fc06aL, 0xd268f536L, 0xe10af79aL,
+ 0xc1af4d69L, 0x1d2917b5L, 0xec4c304dL, 0x9ee5016cL,
+ 0x69232f74L, 0xfead7bb3L, 0xe9089ab6L, 0xf012f6aeL,
+ };
+ register act_uint32_t hash = 0;
+ register act_uint8_t k;
+
+ while (len-- > 0) {
+ k = *key++;
+ hash ^= tab[(k + hash) & 0x0f];
+ hash = (hash << 1) | (hash >> 31);
+ /* hash &= 0xffffffffL; removed, because not necessary in Act */
+ hash ^= tab[((k >> 4) + hash) & 0x0f];
+ hash = (hash << 2) | (hash >> 30);
+ /* hash &= 0xffffffffL; removed, because not necessary in Act */
+ }
+ return hash;
+ }
+
+ /*
+ * BUZHASH (Robert 'BUZ' Uzgalis, Hash)
+ *
+ * This is Robert 'BUZ' Uzgalis's hash function he published as
+ * `buzhash' (see http://serve.net/buz/) The main difference in our
+ * version is just that we use only 32 bits while the original uses
+ * actually 64 bits (both in the table and the output). For the table
+ * I've just stripped of the upper 32 bits of the values in the original
+ * Java implementation. The table consists of random values, but if you
+ * write down the values one per line, then in each bit column there are both
+ * 128 one and 128 zero bits (which is for a good statistically expected
+ * distribution).
+ */
+ intern act_uint32_t
+ act_hash_fct_buzhash(
+ register act_uint8_t *key,
+ register act_size_t len)
+ {
+ static act_uint32_t tab[256] = {
+ 0x043a46fL, 0x6e7eac19L, 0xcf055952L, 0xf010101L, 0x128e8a64L,
+ 0xadcfef2L, 0x42e20c6cL, 0xb1095c58L, 0x5361d67L, 0xc7a4b199L,
+ 0x2f24df2L, 0xd0549327L, 0x9a3b180fL, 0xb21f2ebL, 0x3cff1325L,
+ 0x7b575b9L, 0x8a23b7e2L, 0xfbd9091dL, 0x34dbdf9L, 0xb68d6313L,
+ 0x6d06b93L, 0xeba548afL, 0xacc917c9L, 0xdffbcfaL, 0xd301f3b5L,
+ 0x1663592L, 0xf6ce9e4fL, 0x13206f02L, 0x2dc50f7L, 0x3e880a87L,
+ 0xbbf065dL, 0x8fabcb6dL, 0x9116f2d0L, 0xb9af152L, 0xe85aec09L,
+ 0xc4fc987L, 0xa9ce535eL, 0xb849398eL, 0xd2e70d8L, 0xae19b18fL,
+ 0x7d5ebeaL, 0xfdc60511L, 0x3fcc44afL, 0x4a68f17L, 0xa09aafdcL,
+ 0x94a3294L, 0xae1de1b9L, 0xfd1c1dd0L, 0x8b98ee6L, 0xd357dabcL,
+ 0xe8826aaL, 0xec4055f1L, 0x4c34f8a9L, 0x170e402L, 0x55eca72eL,
+ 0x1bde03fL, 0x25e368ffL, 0x0b120f4aL, 0x028f728L, 0x14df0433L,
+ 0xdd3601eL, 0xaa052772L, 0xe427f736L, 0x3e35041L, 0x69b76914L,
+ 0x3b3c01cL, 0x307d6fafL, 0xc221deccL, 0x4281a5dL, 0xa2fcaba7L,
+ 0x66d4a9fL, 0x02c4be93L, 0x332ecb2fL, 0x6f74ab0L, 0x2f1dfe8fL,
+ 0x152a6f9L, 0xc2ea9be7L, 0x86c1899eL, 0x3bdefd7L, 0x7512901bL,
+ 0x94a1fbdL, 0x3d47ff0dL, 0xc6f78e66L, 0xe2d25d2L, 0x0134d573L,
+ 0x1023afaL, 0xc8c66c0aL, 0xd54c12edL, 0xf6689f0L, 0x67f7677aL,
+ 0x67b9867L, 0xcd5b2341L, 0x1733f9bcL, 0xbc867bfL, 0xd9418811L,
+ 0x7499083L, 0xdf9b12e8L, 0xec3e0928L, 0x6d08914L, 0x758e524aL,
+ 0x000f455L, 0x1a786c79L, 0x8e012db1L, 0xd7b42faL, 0x25cda5f0L,
+ 0xfba9220L, 0x605a11e1L, 0x6cb23e6cL, 0xb483b87L, 0xb997ee22L,
+ 0x77f7362L, 0x2c1768d4L, 0x1673f9adL, 0x11fe93dL, 0x04e1cde4L,
+ 0x0747250L, 0x005b5db6L, 0xbbaf4817L, 0x379e196L, 0xaca98701L,
+ 0x24bde84L, 0x9fabbcb6L, 0x4a97882bL, 0x59a1fd8L, 0x7ec7ce10L,
+ 0x780f244L, 0x2f61b3ffL, 0xa1c71c95L, 0xb2d765cL, 0xf988514dL,
+ 0xa98e840L, 0x1411bc42L, 0xaa4482c2L, 0xd9d47daL, 0xf128a622L,
+ 0x5ba5647L, 0x18962dbdL, 0x70f6d242L, 0x7635d81L, 0x43753680L,
+ 0xaeaab4cL, 0x810f2220L, 0x65d9c0b1L, 0x8356c94L, 0x30f27e2fL,
+ 0xd16b440L, 0x35771070L, 0xe9bc2336L, 0x935d2fdL, 0xf4720cffL,
+ 0x975173cL, 0x520e2405L, 0xa9e73ce2L, 0x62623a7L, 0x18e26104L,
+ 0x0e4f061L, 0x464cfee9L, 0xccdc534aL, 0xf192a14L, 0x94b71649L,
+ 0xaeb0675L, 0x4647e040L, 0x397f1004L, 0x4ec8dfcL, 0xbfd0006bL,
+ 0x5b4ed0fL, 0xba6bccbeL, 0x2e03fe1bL, 0x6f0b363L, 0xc3392942L,
+ 0x2d6cf9cL, 0xce55fec5L, 0x09b40463L, 0x14a310bL, 0x7bbcf76bL,
+ 0xc249602L, 0xc4e99555L, 0xde625355L, 0xc1aa55dL, 0x3eaced91L,
+ 0x3b9ff1eL, 0x8d381f2dL, 0xbcdb5ba8L, 0xf7792bcL, 0xf05a19a0L,
+ 0x60ffb0cL, 0x1a68fa68L, 0x02b1ce1aL, 0xa610474L, 0xd1a0fecbL,
+ 0x90e8533L, 0x23f84d95L, 0x83c110c4L, 0xf90588dL, 0x9ee04455L,
+ 0x40504baL, 0xfee93369L, 0x85804099L, 0xbe5d01bL, 0x4b3865d6L,
+ 0xa5c108fL, 0x9654f2dcL, 0xb0d19772L, 0x406152bL, 0x7be2b8a5L,
+ 0x92967adL, 0x6308e597L, 0xe874e16aL, 0xd2e274fL, 0x6007fc05L,
+ 0x230fc39L, 0x99144de1L, 0x8dcc89b3L, 0x4161bfdL, 0x498cd270L,
+ 0xdbbd9f8L, 0x5628d7d0L, 0x205d9ea4L, 0x214ebfaL, 0xd1ebedafL,
+ 0x237002fL, 0x147e6e5eL, 0x4483ebd3L, 0x9b05aa6L, 0x3517c363L,
+ 0x8e9e8a2L, 0x19d89df6L, 0x62defab3L, 0x4f4e201L, 0x57c48f3fL,
+ 0x8e6e5dcL, 0x5fa6d27aL, 0x1dc3078eL, 0xca367f9L, 0xfdcbb7ccL,
+ 0xf36414bL, 0x1d3a034fL, 0x122d654fL, 0xb336078L, 0x3a8b9600L,
+ 0xb5f1484L, 0x3ccfb7c6L, 0x2ff89cf1L, 0x09919a6L, 0xfa83287eL,
+ 0x694b7cdL, 0x77df5aeaL, 0x944508ccL, 0x581fbb8L, 0x728a05cbL,
+ 0x4a31712L, 0xc2f6acfaL, 0x6e560b10L, 0xd8d7ce1L, 0x0d2b2adeL,
+ 0x0bbaa936L
+ };
+ register act_uint32_t hash = 0xe9ae3b8aL /* random init */;
+
+ while (len-- > 0)
+ hash = ((hash<<1)^((hash>>31)&1)) ^ tab[*key++];
+ return hash;
+ }
+
+ /*
+ * PEARSON (Peter K. Pearson)
+ *
+ * This historical hash function was published by Peter K. Pearson.
+ * He claimed this algorithm worked well for text strings (with 8-bit
+ * bytes). The used table is an arbitrary permutation of the values
+ * 0x00..0xff I've calculated with a small Perl script for ACT.
+ * Additionally the version below contains actually four Pearson hash
+ * functions combined, one for each byte of the 32 bit hash in order
+ * to really generate a 32 bit hash (and not just an 8 bit hash as the
+ * original). As a result its now unfortunately a slower hash (because
+ * of the four byte output) but distributes real world keys very well.
+ * OTOH progressing keys consisting of the same bytes it dislikes very
+ * much and then produces lots of collisions (but that doesn't matter
+ * usually).
+ */
+ intern act_uint32_t
+ act_hash_fct_pearson(
+ register act_uint8_t *key,
+ register act_size_t len)
+ {
+ static unsigned char ptab[256] = {
+ 0xd0, 0x24, 0x61, 0x1f, 0x65, 0xfb, 0xe1, 0x12, 0x64, 0xa7,
+ 0xd9, 0x7f, 0x49, 0xf1, 0xfc, 0x89, 0xd8, 0x57, 0x03, 0xda,
+ 0x4a, 0x4e, 0xc8, 0xb9, 0x42, 0x7b, 0x44, 0x88, 0x3e, 0x6e,
+ 0x1d, 0xc2, 0x96, 0x5d, 0x10, 0x67, 0x2b, 0x31, 0x5f, 0x2c,
+ 0xfe, 0x4f, 0x01, 0x7d, 0xf6, 0xe7, 0x15, 0x54, 0xaa, 0x29,
+ 0x81, 0x0b, 0xde, 0xc1, 0xc0, 0x16, 0x35, 0xf2, 0xc5, 0x43,
+ 0x22, 0x41, 0xc9, 0x5a, 0xc6, 0x6a, 0x04, 0xb8, 0x94, 0xac,
+ 0xc4, 0x1c, 0x36, 0x71, 0xaf, 0x17, 0xfd, 0xe6, 0x20, 0x56,
+ 0x38, 0xbf, 0x55, 0xdf, 0x3d, 0x98, 0x40, 0x09, 0x0d, 0x33,
+ 0xb7, 0x90, 0x76, 0xca, 0xff, 0x9c, 0x73, 0x7e, 0xa6, 0x6d,
+ 0xcb, 0x39, 0xc3, 0xd5, 0xce, 0xa4, 0xc7, 0x27, 0xcf, 0x58,
+ 0x1b, 0xb2, 0x8d, 0x11, 0x0c, 0x0f, 0x34, 0xb4, 0x69, 0xd6,
+ 0x2f, 0xa5, 0x51, 0x32, 0x37, 0x6f, 0x8c, 0xcd, 0xba, 0x5e,
+ 0x82, 0x1a, 0xa9, 0x46, 0x91, 0x93, 0xbc, 0xbe, 0xe2, 0x4b,
+ 0x18, 0xdc, 0xeb, 0x3c, 0x21, 0x47, 0x70, 0x4d, 0xae, 0xf9,
+ 0xee, 0xa3, 0xec, 0x97, 0x08, 0xab, 0xad, 0xbd, 0x48, 0xb0,
+ 0xa0, 0xb3, 0x68, 0xd7, 0xe4, 0xe3, 0x79, 0x4c, 0x95, 0x8b,
+ 0xb1, 0xf8, 0x2a, 0xa8, 0x9a, 0x30, 0xf3, 0xf5, 0xd3, 0x50,
+ 0xf0, 0x9e, 0x63, 0x9d, 0x72, 0x3f, 0xd2, 0x85, 0x60, 0x3b,
+ 0x0e, 0x6b, 0x19, 0x52, 0xe0, 0xef, 0x13, 0x6c, 0xb5, 0x8e,
+ 0x00, 0x14, 0x8a, 0x1e, 0x06, 0xa2, 0xfa, 0x0a, 0x8f, 0x80,
+ 0x86, 0x07, 0xed, 0x84, 0x92, 0x45, 0x26, 0xf7, 0x75, 0xd4,
+ 0x83, 0x7a, 0xdd, 0x62, 0x7c, 0x9b, 0xe5, 0xa1, 0x2e, 0xdb,
+ 0xea, 0x25, 0x5c, 0x87, 0x74, 0x5b, 0x99, 0x9f, 0xe8, 0x3a,
+ 0x66, 0x02, 0x59, 0x28, 0xb6, 0xcc, 0x53, 0xf4, 0xe9, 0x05,
+ 0xd1, 0x78, 0xbb, 0x77, 0x2d, 0x23
+ };
+ register unsigned char h1,h2,h3,h4;
+ register unsigned char c;
+ act_uint32_t hash;
+
+ h1 = 0x00; h2 = 0x33; h3 = 0x99; h4 = 0xaa; /* arbitrary random init */
+ while (len-- > 0) {
+ c = *key++;
+ h1 = ptab[h1 ^ c];
+ h2 = ptab[h2 ^ c];
+ h3 = ptab[h3 ^ c];
+ h4 = ptab[h4 ^ c];
+ }
+ hash = (h4 << 24) ^ (h3 << 16) ^ (h2 << 8) ^ h1;
+ return hash;
+ }
+
+ /*
+ * RIFKIN (Jon Rifkin Hash)
+ *
+ * This is the hash function from Jon Rifkin <j.rifkin@uconn.edu>
+ * as found in a similar form in hash.c inside his ipaudit package.
+ * It's an average hash function. Neither very good nor very bad.
+ */
+ intern act_uint32_t
+ act_hash_fct_rifkin(
+ register act_uint8_t *key,
+ register act_size_t len)
+ {
+ register act_uint32_t hash = 0;
+ register int ishift = 0;
+
+ while (len-- > 0) {
+ hash ^= (((act_uint32_t)(*key++)) << ishift);
+ ishift += 8;
+ if (ishift >= 32)
+ ishift = 0;
+ }
+ hash = hash + (hash << 16) - (hash >> 16) - 1;
+ return hash;
+ }
+
+ /*
+ * ASU (Aho, Sethi, Ullman)
+ *
+ * This is the hashing algorithm as proposed by Aho, Seti and Ullmann in
+ * their algorithm books. It is not very fast, but distributes well.
+ */
+ intern act_uint32_t
+ act_hash_fct_asu(
+ register act_uint8_t *key,
+ register act_size_t len)
+ {
+ register act_uint32_t hash;
+ register act_uint32_t g;
+
+ hash = (act_uint32_t)len;
+ while (len-- > 0) {
+ hash = (hash << 4) + *key++;
+ g = hash & 0xf0000000;
+ if (g != 0)
+ hash = (hash ^ (g >> 24)) ^ g;
+ }
+ return hash;
+ }
+
+ /*
+ * HOLUB (Holub Generic Hash)
+ *
+ * This is Weinberger's generic hash algorithm, as adapted and published
+ * by Holub. It was extracted from PHP4's mod_session. It is actually a
+ * not one of the best hash functions in the set, but might have some
+ * particular uses.
+ */
+ intern act_uint32_t
+ act_hash_fct_holub(
+ register act_uint8_t *key,
+ register act_size_t len)
+ {
+ register act_uint32_t hash;
+ register act_uint32_t i;
+
+ hash = 0;
+ while (len-- > 0) {
+ hash = (hash << 4) + *key++;
+ if ((i = hash & 0xf0000000) != 0)
+ hash = (hash ^ (i >> 24)) & 0x0fffffff;
+ }
+ return hash;
+ }
+
+ /*
+ * CBU (CanterBury University)
+ *
+ * McKenzie et all concluded in a paper (B J McKenzie, R Harries & T
+ * Bell, Selecting a hashing algorithm, Software practice & experience
+ * 20, 2 (Feb 1990), 209-224.) that for hashing program identifiers, the
+ * following linear hash function is a good one. It was developed at
+ * the CanterBury University, in Christchurch, New Zealand. It is also
+ * used in the GNU RCS package (see rcs-5.7.tar.gz and there rcslex.c).
+ * It is very fast, but horribly dislikes progressing keys and also
+ * showed a bad distribution for real world keys. So take this hash very
+ * carefully and test whether it works for your data.
+ */
+ intern act_uint32_t
+ act_hash_fct_cbu(
+ register act_uint8_t *key,
+ register act_size_t len)
+ {
+ register act_uint32_t hash = 0;
+
+ while (len-- > 0)
+ hash = (hash << 2) + *key++;
+ return hash;
+ }
+
+ /*
+ * CVS (Concurrent Version System)
+ *
+ * This is the hash function found in CVS 1.10.x (see src/hash.c). It
+ * is the same as the published elf_hash(3) function for use in the
+ * UNIX ELF format for object files. It works fine for binary keys but
+ * very bad for strings where it distributes horribly and has a bad
+ * Chi^2 value. The reason might be that our tests use larger (non-prime
+ * sized) hash tables while CVS actually uses this function with a 151
+ * byte long hash table only. So for special situations this hash might
+ * be reasonable. But as a general purpose hash function for arbitrary
+ * hash table lookups it is bad. Additionally it hates progressing keys.
+ * So this hash is only useful if one really knows the keys one has to
+ * hash and also tests whether this hash works for them.
+ */
+ intern act_uint32_t
+ act_hash_fct_cvs(
+ register act_uint8_t *key,
+ register act_size_t len)
+ {
+ register act_uint32_t hash = 0;
+ register act_uint32_t g;
+
+ while (len-- > 0) {
+ hash = (hash << 4) + *key++;
+ /* rotation */
+ if ((g = (hash & 0xf0000000)) != 0)
+ hash = (hash ^ (g >> 24)) ^ g;
+ }
+ return hash;
+ }
+
+ /*
+ ** ======================================================================
+ ** Hash Function Test and Comparison Suite
+ ** ======================================================================
+ */
+
+ #ifdef ACT_TEST
+
+ #include <stdio.h>
+ #include <stdlib.h>
+ #include <math.h>
+ #include <sys/time.h>
+
+ typedef act_uint32_t ub4;
+
+ #define hashsize(n) ((ub4)1<<(n))
+ #define hashmask(n) (hashsize(n)-1)
+
+ /* table of hash functions */
+ typedef struct {
+ char *name;
+ act_hash_fct_t hash;
+ struct {
+ double t;
+ long coll00;
+ long coll55;
+ long collNN;
+ double used;
+ long min;
+ long max;
+ long delta;
+ double s_chi2;
+ double b_chi2;
+ } stat;
+ } table_entry;
+
+ #define EMPTY_STAT { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
+
+ table_entry table[] = {
+ { "DJBX33A", act_hash_fct_djbx33a, EMPTY_STAT },
+ { "DJBX33X", act_hash_fct_djbx33x, EMPTY_STAT },
+ { "JEDI", act_hash_fct_jedi, EMPTY_STAT },
+ { "VOCONG", act_hash_fct_vocong, EMPTY_STAT },
+ { "JOTCL", act_hash_fct_jotcl, EMPTY_STAT },
+ { "BJDDJ", act_hash_fct_bjddj, EMPTY_STAT },
+ { "CRC32", act_hash_fct_crc32, EMPTY_STAT },
+ { "TEADM", act_hash_fct_teadm, EMPTY_STAT },
+ { "CPOAAT", act_hash_fct_cpoaat, EMPTY_STAT },
+ { "OZSDBM", act_hash_fct_ozsdbm, EMPTY_STAT },
+ { "FONOVO", act_hash_fct_fonovo, EMPTY_STAT },
+ { "KAZLIB", act_hash_fct_kazlib, EMPTY_STAT },
+ { "BUZHASH", act_hash_fct_buzhash, EMPTY_STAT },
+ { "PEARSON", act_hash_fct_pearson, EMPTY_STAT },
+ { "RIFKIN", act_hash_fct_rifkin, EMPTY_STAT },
+ { "ASU", act_hash_fct_asu, EMPTY_STAT },
+ { "HOLUB", act_hash_fct_holub, EMPTY_STAT },
+ { "CBU", act_hash_fct_cbu, EMPTY_STAT },
+ { "CVS", act_hash_fct_cvs, EMPTY_STAT },
+ { NULL, NULL }
+ };
+
+ /* used for timings */
+ void driver1(table_entry *te)
+ {
+ char buf[15000];
+ act_uint32_t h;
+ struct timeval tv1, tv2;
+ double td;
+ int i;
+
+ for (i = 0; i < 15000; i++)
+ buf[i] = i;
+ gettimeofday(&tv1, NULL);
+ for (i = 0; i < 15000; i++)
+ h = te->hash(buf,i);
+ gettimeofday(&tv2, NULL);
+ td = ((double)(tv2.tv_sec*1000000 + tv2.tv_usec) / 1000000) -
+ ((double)(tv1.tv_sec*1000000 + tv1.tv_usec) / 1000000);
+ te->stat.t = td;
+ return;
+ }
+
+ /* check for problems with nulls */
+ int driver2b(table_entry *te, act_uint8_t *buf)
+ {
+ act_uint32_t brain[1000];
+ act_uint32_t h;
+ int eq;
+ int i, j;
+
+ for (i = 0; i < 1000; i++)
+ brain[i] = te->hash(buf, i);
+ eq = 0;
+ for (i = 0; i < 1000; i++) {
+ for (j = 0; j < 1000; j++) {
+ if (i == j)
+ continue;
+ if (brain[i] == brain[j])
+ eq++;
+ }
+ }
+ return eq;
+ }
+ void driver2(table_entry *te)
+ {
+ unsigned char buf[1000];
+ int i;
+ int eq;
+
+ for (i = 0; i < 1000; i++)
+ buf[i] = 0;
+ eq = driver2b(te, buf);
+ te->stat.coll00 = eq;
+ for (i = 0; i < 1000; i++)
+ buf[i] = 0x55;
+ eq = driver2b(te, buf);
+ te->stat.coll55 = eq;
+ for (i = 0; i < 1000; i++)
+ buf[i] = i;
+ eq = driver2b(te, buf);
+ te->stat.collNN = eq;
+ return;
+ }
+
+ /* check for distribution */
+ void driver3(table_entry *te, char *file, int linewise)
+ {
+ #define TABLESIZE 1000
+ unsigned char buf[1024];
+ act_uint32_t htab[TABLESIZE];
+ act_uint32_t h;
+ act_uint32_t min, max, exp;
+ FILE *fp;
+ int k;
+ int i, j;
+ int b;
+ int nr;
+ double p;
+ double chi2;
+ int bi;
+
+ for (i = 0; i < TABLESIZE; i++)
+ htab[i] = 0;
+ if ((fp = fopen(file, "r")) == NULL) {
+ perror("fopen");
+ return;
+ }
+ min = 0;
+ max = 0;
+ k = 0;
+ if (linewise) {
+ while (fgets(buf, sizeof(buf), fp) != NULL) {
+ h = te->hash(buf, strlen(buf)) % TABLESIZE;
+ htab[h]++;
+ min++;
+ k++;
+ if (k > TABLESIZE*2)
+ break;
+ }
+ }
+ else {
+ while ((b = fread(buf, 1, 10, fp)) > 0 && !feof(fp)) {
+ h = te->hash(buf, b) % TABLESIZE;
+ htab[h]++;
+ min++;
+ k++;
+ if (k > TABLESIZE*2)
+ break;
+ }
+ }
+ fclose(fp);
+ nr = 0;
+ for (i = 0; i < TABLESIZE; i++) {
+ min = _M_MIN(min, htab[i]);
+ max = _M_MAX(max, htab[i]);
+ if (htab[i] == 0)
+ nr++;
+ }
+ /* Calculate Chi^2 value */
+ p = ((double)k)/TABLESIZE;
+ chi2 = 0;
+ for (i = 0; i < k; i++) {
+ bi = 0;
+ for (j = 0; j < TABLESIZE; j++)
+ if (htab[j] == i)
+ bi++;
+ chi2 += (bi * ((double)((i-p)*(i-p))) / p);
+ }
+ chi2 -= TABLESIZE;
+ chi2 /= sqrt((double)TABLESIZE);
+ if (linewise)
+ te->stat.s_chi2 = chi2;
+ else
+ te->stat.b_chi2 = chi2;
+ te->stat.used = (nr == 0 ? 100 : 100-(((double)nr)/TABLESIZE)*100);
+ te->stat.min = min;
+ te->stat.max = max;
+ te->stat.delta = max-min;
+ return;
+ }
+
+ /* the driver program */
+ int main(int argc, char *argv[])
+ {
+ int i;
+
+ system("gzip -1 </usr/share/dict/words >/tmp/x");
+ printf("Testing:");
+ for (i = 0; table[i].name != NULL; i++) {
+ printf(" %s", table[i].name);
+ fflush(stdout);
+ driver1(&table[i]);
+ driver2(&table[i]);
+ driver3(&table[i], "/usr/share/dict/words", 1);
+ driver3(&table[i], "/tmp/x", 0);
+ }
+ printf("\n");
+ fflush(stdout);
+ printf("+-----------------------------------------------------------------------------+\n");
+ printf("| Hash Func Time Coll00 Coll55 CollNN Used Min Max Diff Chi2/S Chi2/B |\n");
+ printf("+ ---------- ------ ------ ------ ------ ----- ---- ---- ---- ------- ------- +\n");
+ for (i = 0; table[i].name != NULL; i++) {
+ printf("| %-10s %6.2f %6d %6d %6d %5.2f %4d %4d %4d %7.2f%c%7.2f%c|\n",
+ table[i].name,
+ table[i].stat.t,
+ table[i].stat.coll00,
+ table[i].stat.coll55,
+ table[i].stat.collNN,
+ table[i].stat.used,
+ table[i].stat.min,
+ table[i].stat.max,
+ table[i].stat.delta,
+ table[i].stat.s_chi2,
+ (table[i].stat.s_chi2 > 3 || table[i].stat.s_chi2 < -3) ? '!' : ' ',
+ table[i].stat.b_chi2,
+ (table[i].stat.b_chi2 > 3 || table[i].stat.b_chi2 < -3) ? '!' : ' ');
+ }
+ printf("+-----------------------------------------------------------------------------+\n");
+ return 0;
+ }
+
+ #endif /* ACT_TEST */
+
|